76 research outputs found

    Modulating Brain Rhythms of Pain using Transcranial Alternating Current Stimulation (tACS)?

    Get PDF
    Pain protects the body. However, pain can also occur for longer periods without serving protective functions. Such chronic pain conditions are difficult to treat. Thus, a better understanding of the underlying neural mechanisms and new approaches for the treatment of pain are urgently needed. Here, we investigated a causal role of oscillatory brain activity for pain and explored the potential of transcranial alternating current stimulation (tACS) as a new treatment approach for pain. To this end, we investigated whether tACS can modulate pain and pain-related autonomic activity in 29 healthy human participants using a tonic heat pain paradigm as an experimental model of chronic pain. In 6 recording sessions, participants received tACS over prefrontal or somatosensory cortices at alpha or gamma frequencies or sham tACS. During tACS, pain ratings and autonomic responses were collected. TACS did not modulate pain intensity, the stability of pain ratings or the translation of the noxious stimulus into pain. Likewise, tACS did not change autonomic responses. Bayesian statistics further indicated a lack of tACS effects in most conditions. The only exception was alpha tACS over somatosensory cortex where evidence for tACS effects was inconclusive. Taken together, the present study did not find significant tACS effects on tonic experimental pain in healthy human participants. However, considering the conceptual plausibility of using tACS to modulate pain and the urgent need for novel pain treatments, further tACS studies are warranted. Based on the present findings, such studies might apply refined stimulation protocols targeting alpha oscillations in somatosensory cortices

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity

    Frontal-midline theta frequency and probabilistic learning: a transcranial alternating current stimulation study

    Get PDF
    Probabilistic learning is a fundamental cognitive ability that extracts and represents regularities of our environment enabling predictive processing during perception and acquisition of perceptual, motor, cognitive, and social skills. Previous studies show competition between neural networks related to executive function/working memory vs. probabilistic learning. Theta synchronization has been associated with the former while desynchronization with the latter in correlational studies. In the present paper our aim was to test causal relationship between fronto-parietal midline theta synchronization and probabilistic learning with non-invasive transcranial alternating current (tACS) stimulation. We hypothesize that theta synchronization disrupts probabilistic learning performance by modulating the competitive relationship. Twenty-six young adults performed the Alternating Serial Reaction Time (ASRT) task to assess probabilistic learning in two sessions that took place one week apart. Stimulation was applied in a double-blind cross-over within-subject design with an active theta tACS and a sham stimulation in a counter-balanced order between participants. Sinusoidal current was administered with 1 mA peak-to-peak intensity throughout the task (approximately 20 minutes) for the active stimulation and 30 seconds for the sham. We did not find an effect of fronto-parietal midline theta tACS on probabilistic learning comparing performance during active and sham stimulation. To influence probabilistic learning, we suggest applying higher current intensity and stimulation parameters more precisely aligned to endogenous brain activity for future studies

    A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES checklist): a consensus study and statement

    Get PDF
    Background: Low intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation (tACS or tDCS), applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional magnetic resonance imaging (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. Objective: To develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency, and reproducibility (ContES Checklist). Methods: A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists (EP) through the International Network of the tES-fMRI (INTF) Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC based on a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed using the checklist. Results: Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (1) technological factors, (2) safety and noise tests, and (3) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. Conclusions: Use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies, and increase methodological transparency and reproducibility

    Systemkonflikte bei der freiwilligen Unfallversicherung des Arbeitnehmers

    No full text
    Im Zusammenhang mit der einkommen- bzw. lohnsteuerrechtlichen Behandlung von freiwilligen Unfallversicherungen der Arbeitnehmer ist das BMF einzelnen Zweifelsfragen erstmals mit Schreiben v. 18. 2. 1997 - S 2332 (BStBl 1997 I S. 278) entgegengetreten. Gemäß der darin vertretenen Auffassung der Finanzverwaltung sind dem Grunde nach vom Arbeitnehmer selbst abgeschlossene Versicherungen, die Risiken aus der beruflichen Tätigkeit umfassen, und vom Arbeitgeber für seine Arbeitnehmer abgeschlossene Unfallversicherungen (Versicherungen für fremde Rechnung) voneinander abzugrenzen

    Hands-on Workshop on Research Data Management

    No full text
    <p>Awareness and knowledge about research data management (RDM) as well as the application of the techniques is highly heterogenous among researchers in natural sciences and mathematics. Also, the required techniques – and relevance of concepts – are highly diverse. To generally and individually improve the handling of research data, we have developed a modular workshop and hands-on session using realistic data. A secondary aim is to increase individual motivation to professionally manage and share own data by overcoming negative prepossessions against RDM and data sharing.</p&gt

    Signal-Space Projection Suppresses the tACS Artifact in EEG Recordings

    No full text
    Background: To probe the functional role of brain oscillations, transcranial alternating current stimulation (tACS) has proven to be a useful neuroscientific tool. Because of the excessive tACS-caused artifact at the stimulation frequency in electroencephalography (EEG) signals, tACS + EEG studies have been mostly limited to compare brain activity between recordings before and after concurrent tACS. Critically, attempts to suppress the artifact in the data cannot assure that the entire artifact is removed while brain activity is preserved. The current study aims to evaluate the feasibility of specific artifact correction techniques to clean tACS-contaminated EEG data. New Method: In the first experiment, we used a phantom head to have full control over the signal to be analyzed. Driving pre-recorded human brain-oscillation signals through a dipolar current source within the phantom, we simultaneously applied tACS and compared the performance of different artifact-correction techniques: sine subtraction, template subtraction, and signal-space projection (SSP). In the second experiment, we combined tACS and EEG on one human subject to demonstrate the best-performing data-correction approach in a proof of principle. Results: The tACS artifact was highly attenuated by SSP in the phantom and the human EEG; thus, we were able to recover the amplitude and phase of the oscillatory activity. In the human experiment, event-related desynchronization could be restored after correcting the artifact. Comparison With Existing Methods: The best results were achieved with SSP, which outperformed sine subtraction and template subtraction. Conclusion: Our results demonstrate the feasibility of SSP by applying it to a phantom measurement with pre-recorded signal and one human tACS + EEG dataset. For a full validation of SSP, more data are needed.Peer reviewe

    Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations

    No full text
    Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS
    • …
    corecore