19 research outputs found

    The MetNet vehicle : a lander to deploy environmental stations for local and global investigations of Mars

    Get PDF
    Investigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers. The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50-70 ms(-1) with a deceleration of <500 g for <20 ms. The total mass of the prototype design is approximate to 24 kg, with approximate to 4 kg of mass available for the payload. The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass. The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions.Peer reviewe

    Functional annotation of human long noncoding RNAs via molecular phenotyping

    Get PDF
    Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-todate lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.Peer reviewe

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    QUANTUM-CHEMICAL ANALYSES OF ENERGETICAL CHARACTERICTICS AND STATISTICAL MODELLING OF NON-ORDERED OXIDE SYSTEMS

    No full text
    The aim is to develop the system approach to the analysis of the interatomic interaction in the non-ordered oxides with ion-covalent character of the bonds and to describe this interaction in the molecular-statistical models. The new approach to the description of the interparticle interaction in the non-crystalline multicomponent oxide systems has been developed. The applicability fields of the ionic, covalent and lattice models for oxides have been determined. The methods for analysis of the potential functions, force constants, total energy and spectral characteristics have been proposed and realized, the models of the two- and three-component systems have been constructed. The proposed approach has been used in the works of other authors possessing the study of the systems with ion-covalent character of the bonds. Application field: non-crystalline materials in quantum chemistry, physical chemistry and theory of metallurgical processes.Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Development and improvement of lost foam casting technology based on mathematical modeling

    No full text
    A detailed analysis of the process of filling the mould for lost foam casting technology was made based on a mathematical model, that takes into account the emergence of low-frequency oscillations. The optimum range of technological parameters for a few specific details were discovered. The factors that may lead to the release of metal and to mould collapse were also identified

    Development and improvement of lost foam casting technology based on mathematical modeling

    No full text
    A detailed analysis of the process of filling the mould for lost foam casting technology was made based on a mathematical model, that takes into account the emergence of low-frequency oscillations. The optimum range of technological parameters for a few specific details were discovered. The factors that may lead to the release of metal and to mould collapse were also identified

    Methods of Designing Gear’s Machining Tools with the Hyperboloid Cutting Part

    No full text
    The technique of obtaining a hyperboloidal gear engagement with linear contact between a cylindrical involute wheel and a hyperboloid producing worm is considered. The resulting cutting tool greatly simplifies the manufacturing technology of hyperboloid worms and hyperboloid gears along with improved accuracy and roughness of the machined teeth and lower manufacturing costs

    The Role of Serotonin in the Influence of Intense Locomotion on the Behavior Under Uncertainty in the Mollusk Lymnaea stagnalis

    No full text
    The role of serotonin in the immediate and delayed influence of physical exercise on brain functions has been intensively studied in mammals. Recently, immediate effects of intense locomotion on the decision-making under uncertainty were reported in the Great Pond snail, Lymnaea stagnalis (Korshunova et al., 2016). In this animal, serotonergic neurons control locomotion, and serotonin modulates many processes underlying behavior, including cognitive ones (memory and learning). Whether serotonin mediates the behavioral effects of intense locomotion in mollusks, as it does in vertebrates, remains unknown. Here, the delayed facilitating effects of intense locomotion on the decision-making in the novel environment are described in Lymnaea. Past exercise was found to alter the metabolism of serotonin, namely the content of serotonin precursor and its catabolites in the cerebral and pedal ganglia, as measured by high-performance liquid chromatography. The immediate and delayed effects of exercise on serotonin metabolism were different. Moreover, serotonin metabolism was regulated differently in different ganglia. Pharmacological manipulations of the serotonin content and receptor availability suggests that serotonin is likely to be responsible for the locomotor acceleration in the test of decision-making under uncertainty performed after exercise. However, the exercise-induced facilitation of decision-making (manifested in a reduced number of turns during the orienting behavior) cannot be attributed to the effects of serotonin
    corecore