270 research outputs found

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    Exciton/Charge-transfer Electronic Couplings in Organic Semiconductors

    Get PDF
    Charge transfer (CT) states and excitons are important in energy conversion processes that occur in organic light emitting devices (OLEDS) and organic solar cells. An ab initio density functional theory (DFT) method for obtaining CT−exciton electronic couplings between CT states and excitons is presented. This method is applied to two organic heterodimers to obtain their CT−exciton coupling and adiabatic energy surfaces near their CT−exciton diabatic surface crossings. The results show that the new method provides a new window into the role of CT states in exciton−exciton transitions within organic semiconductors.United States. Dept. of Energy (DEFG02- 07ER46474)David & Lucile Packard Foundation (Fellowship

    Distinct Regions of the Large Extracellular Domain of Tetraspanin CD9 Are Involved in the Control of Human Multinucleated Giant Cell Formation

    Get PDF
    Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining ‘CCG’ motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role

    Genetic and Functional Role of TNF-alpha in the Development Trypanosoma cruzi Infection

    Get PDF
    TNF-alpha plays an important role in trypanocidal mechanisms and is related to tissue injury. This cytokine has been detected in the heart of human chagasic patients where it is associated with tissue damage. This study investigated whether TNF-alpha levels and the presence of genetic polymorphisms are associated with the presence of T. cruzi infection and/or with the development of the cardiac form in chronic chagasic patients. Genomic DNA of 300 subjects from an endemic area was extracted and analyzed by PCR using specific primers. TNF-alpha was assayed in culture supernatants by ELISA. An association was observed between the absence of the TNF-238A allele and negative serology. Furthermore, seropositive individuals carrying the TNF-238A allele produced significantly higher TNF-alpha levels without stimulation (p = 0.04) and after stimulation with LPS (p = 0.007) and T. cruzi antigens (p = 0.004). The present results suggest that the polymorphism at position -238 influences susceptibility to infection and that this allele is associated with higher TNF-alpha production in seropositive individuals

    Role of Secreted Conjunctival Mucosal Cytokine and Chemokine Proteins in Different Stages of Trachomatous Disease

    Get PDF
    Trachoma, a disease of antiquity dating back to the 16th century B.C.E., predominates among developing countries, where it remains the primary cause of preventable blindness worldwide. In trachoma, recurrent Chlamydia trachomatis bacterial infections during childhood are thought to result in inflammation and subsequent conjunctival scarring that can progress to trichiasis (TT; chronic trachoma; inversion of ≥1 eyelash that touches the globe of the eye). The trachomatous follicular grade (TF; active disease) is a self-limiting disease, suggesting the coexistence of protective inflammatory proteins. The trachomatous inflammatory grade (TI; active disease) is more likely to progress to trachomatous scarring (TS; chronic trachoma). To date, there are only a handful of studies that have examined the immune response in trachoma, and these were primarily based on gene expression. Characterizing quantified conjunctival mucosal immune differences for secreted proteins among individuals with no, active, and chronic trachoma may identify protein biomarkers associated with protection versus disease, which would greatly aid our understanding of the immunopathogenesis of trachoma. In this study, we characterized 25 cytokine and chemokine proteins for all trachoma grades. We identified eight cytokines and chemokines as risk factors for chronic trachoma and four as protective. Together, these findings further characterize the immunopathologic responses involved during trachoma, which will likely aid in the design of a vaccine and immunomodulating therapeutics for trachoma

    Global Proteome Analysis of Leptospira interrogans

    Get PDF
    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spec-trometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors

    Differential Regional Immune Response in Chagas Disease

    Get PDF
    Following infection, lymphocytes expand exponentially and differentiate into effector cells to control infection and coordinate the multiple effector arms of the immune response. Soon after this expansion, the majority of antigen-specific lymphocytes die, thus keeping homeostasis, and a small pool of memory cells develops, providing long-term immunity to subsequent reinfection. The extent of infection and rate of pathogen clearance are thought to determine both the magnitude of cell expansion and the homeostatic contraction to a stable number of memory cells. This straight correlation between the kinetics of T cell response and the dynamics of lymphoid tissue cell numbers is a constant feature in acute infections yielded by pathogens that are cleared during the course of response. However, the regional dynamics of the immune response mounted against pathogens that are able to establish a persistent infection remain poorly understood. Herein we discuss the differential lymphocyte dynamics in distinct central and peripheral lymphoid organs following acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. While the thymus and mesenteric lymph nodes undergo a severe atrophy with massive lymphocyte depletion, the spleen and subcutaneous lymph nodes expand due to T and B cell activation/proliferation. These events are regulated by cytokines, as well as parasite-derived moieties. In this regard, identifying the molecular mechanisms underlying regional lymphocyte dynamics secondary to T. cruzi infection may hopefully contribute to the design of novel immune intervention strategies to control pathology in this infection

    The Relationship Between Parenting and Delinquency: A Meta-analysis

    Get PDF
    This meta-analysis of 161 published and unpublished manuscripts was conducted to determine whether the association between parenting and delinquency exists and what the magnitude of this linkage is. The strongest links were found for parental monitoring, psychological control, and negative aspects of support such as rejection and hostility, accounting for up to 11% of the variance in delinquency. Several effect sizes were moderated by parent and child gender, child age, informant on parenting, and delinquency type, indicating that some parenting behaviors are more important for particular contexts or subsamples. Although both dimensions of warmth and support seem to be important, surprisingly very few studies focused on parenting styles. Furthermore, fewer than 20% of the studies focused on parenting behavior of fathers, despite the fact that the effect of poor support by fathers was larger than poor maternal support, particularly for sons. Implications for theory and parenting are discussed

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
    corecore