90 research outputs found

    Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells

    Get PDF
    Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants

    Refining Pathways: A Model Comparison Approach

    Get PDF
    Cellular signalling pathways consolidate multiple molecular interactions into working models of signal propagation, amplification, and modulation. They are described and visualized as networks. Adjusting network topologies to experimental data is a key goal of systems biology. While network reconstruction algorithms like nested effects models are well established tools of computational biology, their data requirements can be prohibitive for their practical use. In this paper we suggest focussing on well defined aspects of a pathway and develop the computational tools to do so. We adapt the framework of nested effect models to focus on a specific aspect of activated Wnt signalling in HCT116 colon cancer cells: Does the activation of Wnt target genes depend on the secretion of Wnt ligands or do mutations in the signalling molecule beta-catenin make this activation independent from them? We framed this question into two competing classes of models: Models that depend on Wnt ligands secretion versus those that do not. The model classes translate into restrictions of the pathways in the network topology. Wnt dependent models are more flexible than Wnt independent models. Bayes factors are the standard Bayesian tool to compare different models fairly on the data evidence. In our analysis, the Bayes factors depend on the number of potential Wnt signalling target genes included in the models. Stability analysis with respect to this number showed that the data strongly favours Wnt ligands dependent models for all realistic numbers of target genes

    Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates

    Get PDF
    This is the author accepted manuscript.The final version is available from eLife Sciences Publications via the DOI in this record.Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/PCP autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/β-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 gets activated. Ror2/PCP signaling leads to induction of cytonemes, which mediate transport of Wnt8a to neighboring cells. In the Wnt receiving cells, Wnt8a on cytonemes triggers Wnt/β-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, the murine intestinal crypt, and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates.This project was funded by the Living Systems Institute, the University of Exeter and the Boehringer Ingelheim Foundation to SS. Studies in the DMV lab are supported by the National Research Foundation of Singapore and National Medical Research Council under its STAR Award Program. JR and AS were supported by the Impuls- und Vernetzungsfond of the Helmholtz Association. GUN was funded by the Deutsche Forschungsgemeinschaft (SFB 1324, projects A6 and Z2, GRK2039) and Helmholtz Association Program STN

    Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells

    Get PDF
    Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls

    TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma

    Get PDF
    Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics

    Molecular control of nitric oxide synthesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation of adipose-derived stem cells by modulation of Wnt/β-catenin signaling

    Get PDF
    BACKGROUND: Nitric oxide (NO) plays a role in a number of physiological processes including stem cell differentiation and osteogenesis. Endothelial nitric oxide synthase (eNOS), one of three NO-producing enzymes, is located in a close conformation with the caveolin-1 (CAV-1(WT)) membrane protein which is inhibitory to NO production. Modification of this interaction through mutation of the caveolin scaffold domain can increase NO release. In this study, we genetically modified equine adipose-derived stem cells (eASCs) with eNOS, CAV-1(WT), and a CAV-1(F92A) (CAV-1(WT) mutant) and assessed NO-mediated osteogenic differentiation and the relationship with the Wnt signaling pathway. METHODS: NO production was enhanced by lentiviral vector co-delivery of eNOS and CAV-1(F92A) to eASCs, and osteogenesis and Wnt signaling was assessed by gene expression analysis and activity of a novel Runx2-GFP reporter. Cells were also exposed to a NO donor (NONOate) and the eNOS inhibitor, l-NAME. RESULTS: NO production as measured by nitrite was significantly increased in eNOS and CAV-1(F92A) transduced eASCs +(5.59 ± 0.22 μM) compared to eNOS alone (4.81 ± 0.59 μM) and un-transduced control cells (0.91 ± 0.23 μM) (p < 0.05). During osteogenic differentiation, higher NO correlated with increased calcium deposition, Runx2, and alkaline phosphatase (ALP) gene expression and the activity of a Runx2-eGFP reporter. Co-expression of eNOS and CAV-1(WT) transgenes resulted in lower NO production. Canonical Wnt signaling pathway-associated Wnt3a and Wnt8a gene expressions were increased in eNOS-CAV-1(F92A) cells undergoing osteogenesis whilst non-canonical Wnt5a was decreased and similar results were seen with NONOate treatment. Treatment of osteogenic cultures with 2 mM l-NAME resulted in reduced Runx2, ALP, and Wnt3a expressions, whilst Wnt5a expression was increased in eNOS-delivered cells. Co-transduction of eASCs with a Wnt pathway responsive lenti-TCF/LEF-dGFP reporter only showed activity in osteogenic cultures co-transduced with a doxycycline inducible eNOS. Lentiviral vector expression of canonical Wnt3a and non-canonical Wnt5a in eASCs was associated with induced and suppressed osteogenic differentiation, respectively, whilst treatment of eNOS-osteogenic cells with the Wnt inhibitor Dkk-1 significantly reduced expressions of Runx2 and ALP. CONCLUSIONS: This study identifies NO as a regulator of canonical Wnt/β-catenin signaling to promote osteogenesis in eASCs which may contribute to novel bone regeneration strategies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0442-9) contains supplementary material, which is available to authorized users
    corecore