484 research outputs found
Analysis of dimensional accuracy for micro-milled areal material measures with kinematic simulation
The calibration of areal surface topography measuring instruments is of high relevance to estimate the measurement uncertainty and to guarantee the traceability of the measurement results. Calibration structures for optical measuring instruments must be sufficiently small to determine the limits of the instruments. Besides other methods, micro-milling is a suitable process for manufacturing areal material measures. For the manufacturing by micro-milling with ball end mills, the tool radius (effective cutter radius) is the corresponding limiting factor: if the tool radius is too large to penetrate the concave profile details without removing the surrounding material, deviations from the target geometry will occur. These deviations can be detected and excluded before experimental manufacturing with the aid of a kinematic simulation. In this study, a kinematic simulation model for the prediction of the dimensional accuracy of micro-milled areal material measures is developed and validated. Subsequently, a radius study is conducted to determine how the tool radius r of the tool influences the dimensional accuracy of an areal crossed sinusoidal (ACS) geometry according to ISO 25178-70 [1] with a defined amplitude d and period length p. The resulting theoretical surface texture parameters are evaluated and compared to the target values. It was shown that the surface texture parameters deviate from the nominal values depending on the effective cutter radius used. Based on the results of the study, it can be determined with which effective tool radius the measurands Sa and Sq of the material measures are best met. The ideal effective radius for the application considered is between 50 and 75 μm
Kinematic simulation to investigate the influence of the cutting edge topography when ball end micro milling
During the ball end micro milling of material measures, the cutting edge topography is imaged on the machined workpiece. The influence of the chipping on the resulting surface quality is much more dominant than other kinematic effects. In this simulative study, a model is built that is able to predict the correlation between the cutting edge topography and the resulting workpiece topography. Thus, the mentioned correlation can be investigated without overlaying effects of material separation or measurement uncertainties, which are unavoidable in an experimental study. The model has been validated based on four artificial chippings
Analysis of dimensional accuracy for micro-milled areal material measures with kinematic simulation
The calibration of areal surface topography measuring instruments is of high relevance to estimate the measurement uncertainty and to guarantee the traceability of the measurement results. Calibration structures for optical measuring instruments must be sufficiently small to determine the limits of the instruments.
Besides other methods, micro-milling is a suitable process for manufacturing areal material measures. For the manufacturing by micro-milling with ball end mills, the tool radius (effective cutter radius) is the corresponding limiting factor: if the tool radius is too large to penetrate the concave profile details without removing the surrounding material, deviations from the target geometry will occur. These deviations can be detected and excluded before experimental manufacturing with the aid of a kinematic simulation.
In this study, a kinematic simulation model for the prediction of the dimensional accuracy of micro-milled areal material measures is developed and validated. Subsequently, a radius study is conducted to determine how the tool radius r of the tool influences the dimensional accuracy of an areal crossed sinusoidal (ACS) geometry according to ISO 25178-70 [1] with a defined amplitude d and period length p. The resulting theoretical surface texture parameters are evaluated and compared to the target values. It was shown that the surface texture parameters deviate from the nominal values depending on the effective cutter radius used. Based on the results of the study, it can be determined with which effective tool radius the measurands Sa and Sq of the material measures are best met. The ideal effective radius for the application considered is between 50 and 75 μm
Oxidation State and Local Structure of Plutonium Reacted with Magnetite, Mackinawite, and Chukanovite
International audienceDue to their redox reactivity, surface sorption characteristics, and ubiquity as corrosion products or as minerals in natural sediments, iron(II)-bearing minerals control to a large extent the environmental fate of actinides. Pu-LIII-edge XANES and EXAFS spectra were used to investigate reaction products of aqueous 242Pu(III) and 242Pu(V) reacted with magnetite, mackinawite, and chukanovite under anoxic conditions. As Pu concentrations in the liquid phase were rapidly below detection limit, oxidation state and local structure of Pu were determined for Pu associated with the solid mineral phase. Pu(V) was reduced in the presence of all three minerals. A newly identified, highly specific Pu(III)-sorption complex formed with magnetite. Solid PuO2 phases formed in the presence of mackinawite and chukanovite; in the case of chukanovite, up to one-third of plutonium was also present as Pu(III). This highlights the necessity to consider, under reducing anoxic conditions, Pu(III) species in addition to tetravalent PuO2 for environmental risk assessment. Our results also demonstrate the necessity to support thermodynamic calculations with spectroscopic data
The Cytotoxic Natural Product Vioprolide A Targets Nucleolar Protein 14, Which Is Essential for Ribosome Biogenesis.
Novel targets are needed for treatment of devastating diseases such as cancer. For decades, natural products have guided innovative therapies by addressing diverse pathways. Inspired by the potent cytotoxic bioactivity of myxobacterial vioprolides A-D, we performed in-depth studies on their mode of action. Based on its prominent potency against human acute lymphoblastic leukemia (ALL) cells, we conducted thermal proteome profiling (TPP) and deciphered the target proteins of the most active derivative vioprolide A (VioA) in Jurkat cells. Nucleolar protein 14 (NOP14), which is essential in ribosome biogenesis, was confirmed as a specific target of VioA by a suite of proteomic and biological follow-up experiments. Given its activity against ALL cells compared to healthy lymphocytes, VioA exhibits unique therapeutic potential for anticancer therapy through a novel mode of actio
Structure and functions of inhibitory and excitatory glycine receptors.
The strychnine-sensitive glycine receptor (GlyR) is a pentameric chloride channel protein that exists in several developmentally and regionally regulated isoforms in the CNS. These result from the differential expression of four genes encoding different variants (alpha 1-alpha 4) of the ligand-binding subunit of the GlyR. Their assembly with the structural beta subunit is governed by "assembly cassettes" within the extracellular domains of these proteins and creates chloride channels of distinct conductance properties. GlyR gating is potentiated by Zn2+, a metal ion co-released with different neurotransmitters. Site-directed mutagenesis has unraveled major determinants of agonist binding and Zn2+ potentiation. During development, glycine receptors mediate excitation that results in Ca2+ influx and neurotransmitter release. Ca2+ influx triggered by the activation of embryonic GlyRs is required for the synaptic localization of the GlyR and its anchoring protein gepyhrin. In the adult, mutations in GlyR-subunit genes result in motor disorders. The spastic and spasmodic phenotypes in mouse as well as human hereditary startle disease will be discussed
Effective density of states for a quantum oscillator coupled to a photon field
We give an explicit formula for the effective partition function of a harmonically bound particle minimally coupled to a photon field in the dipole approximation. The effective partition function is shown to be the Laplace transform of a positive Borel measure, the effective measure of states. The absolutely continuous part of the latter allows for an analytic continuation, the singularities of which give rise to resonances. We give the precise location of these singularities, and show that they are well approximated by first order poles with residues equal to the multiplicities of the corresponding eigenspaces of the uncoupled quantum oscillator. Thus we obtain a complete analytic description of the natural line spectrum of the charged oscillator
- …