242 research outputs found

    A disk-wind model with correct crossing of all MHD critical surfaces

    Get PDF
    The classical Blandford & Payne (1982) model for the magnetocentrifugal acceleration and collimation of a disk-wind is revisited and refined. In the original model, the gas is cold and the solution is everywhere subfast magnetosonic. In the present model the plasma has a finite temperature and the self-consistent solution of the MHD equations starts with a subslow magnetosonic speed which subsequently crosses all critical points, at the slow magnetosonic, Alfven and fast magnetosonic separatrix surfaces. The superfast magnetosonic solution thus satisfies MHD causality. Downstream of the fast magnetosonic critical point the poloidal streamlines overfocus towards the axis and the solution is terminated. The validity of the model to disk winds associated with young stellar objects is briefly discussed. ~Comment: 13 pages, MNRAS accepted for publicatio

    Two-component jet simulations: II. Combining analytical disk and stellar MHD outflow solutions

    Get PDF
    Theoretical arguments along with observational data of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. Each component's contribution depends on the intrinsic physical properties of the YSO-disk system and its evolutionary stage. The main goal of this paper is to understand some of the basic features of the evolution, interaction and co-existence of the two jet components over a parameter space and when time variability is enforced. Having studied separately the numerical evolution of each type of the complementary disk and stellar analytical wind solutions in Paper I of this series, we proceed here to mix together the two models inside the computational box. The evolution in time is performed with the PLUTO code, investigating the dynamics of the two-component jets, the modifications each solution undergoes and the potential steady state reached.Comment: accepted for publication in A&

    Two-component jet simulations: I. Topological stability of analytical MHD outflow solutions

    Full text link
    Observations of collimated outflows in young stellar objects indicate that several features of the jets can be understood by adopting the picture of a two-component outflow, wherein a central stellar component around the jet axis is surrounded by an extended disk-wind. The precise contribution of each component may depend on the intrinsic physical properties of the YSO-disk system as well as its evolutionary stage. In this context, the present article starts a systematic investigation of two-component jet models via time-dependent simulations of two prototypical and complementary analytical solutions, each closely related to the properties of stellar-outflows and disk-winds. These models describe a meridionally and a radially self-similar exact solution of the steady-state, ideal hydromagnetic equations, respectively. By using the PLUTO code to carry out the simulations, the study focuses on the topological stability of each of the two analytical solutions, which are successfully extended to all space by removing their singularities. In addition, their behavior and robustness over several physical and numerical modifications is extensively examined. It is found that radially self-similar solutions (disk-winds) always reach a final steady-state while maintaining all their well-defined properties. The different ways to replace the singular part of the solution around the symmetry axis, being a first approximation towards a two-component outflow, lead to the appearance of a shock at the super-fast domain corresponding to the fast magnetosonic separatrix surface. Conversely, the asymptotic configuration and the stability of meridionally self-similar models (stellar-winds) is related to the heating processes at the base of the wind.Comment: Accepted for publication in A&

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure

    Velocity asymmetries in YSO jets: Intrinsic and extrinsic mechanisms

    Get PDF
    It is a well established fact that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. In order to understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and one based on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered and the resulting dynamics are examined both in an ideal and a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the non-uniform density distribution of molecular clouds. Ideal and resistive axisymmetric numerical simulations are carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. We find that jet velocity asymmetries can indeed occur both when multipolar magnetic moments are present in the star-disk system as well as when non-uniform environments are considered. The latter case is an external mechanism that can easily explain the large time scale of the phenomenon, whereas the former one naturally relates it to the YSO intrinsic properties. [abridged]Comment: accepted for publication in A&

    Nonradial and nonpolytropic astrophysical outflows VIII. A GRMHD generalization for relativistic jets

    Full text link
    Steady axisymmetric outflows originating at the hot coronal magnetosphere of a Schwarzschild black hole and surrounding accretion disk are studied in the framework of general relativistic magnetohydrodynamics (GRMHD). The assumption of meridional self-similarity is adopted for the construction of semi-analytical solutions of the GRMHD equations describing outflows close to the polar axis. In addition, it is assumed that relativistic effects related to the rotation of the black hole and the plasma are negligible compared to the gravitational and other energetic terms. The constructed model allows us to extend previous MHD studies for coronal winds from young stars to spine jets from Active Galactic Nuclei surrounded by disk-driven outflows. The outflows are thermally driven and magnetically or thermally collimated. The collimation depends critically on an energetic integral measuring the efficiency of the magnetic rotator, similarly to the non relativistic case. It is also shown that relativistic effects affect quantitatively the depth of the gravitational well and the coronal temperature distribution in the launching region of the outflow. Similarly to previous analytical and numerical studies, relativistic effects tend to increase the efficiency of the thermal driving but reduce the effect of magnetic self-collimation.Comment: 20 page, Accepted in A&A 10/10/200

    Dissipationless Disk Accretion

    Full text link
    We consider disk accretion resulting purely from the loss of angular momentum due to the outflow of plasma from a magnetized disk. In this limiting case, the dissipation due to the viscosity and finite electrical conductivity of the plasma can be neglected. We have obtained self-consistent, self-similar solutions for dissipationless disk accretion. Such accretion may result in the formation of objects whose bolometric luminosities are lower than the flux of kinetic energy in the ejected material.Comment: 17 pages, 6 figures, published in Astronomy Reports, Vol.49, No.1, 2005, p.57 (submitted September 13, 2003). Unfortunately, we did not upload the paper to astro-ph before, but since the topic is now of interest we feel that the paper would benefit the communit

    The temperature dependence of the far-infrared-radio correlation in the Herschel-ATLAS

    Get PDF
    Date of Acceptance: 03/09/2014We use 10 387 galaxies from the Herschel Astrophysical TeraHertz Large Area Survey (H-ATLAS) to probe the far-infrared radio correlation (FIRC) of star-forming galaxies as a function of redshift, wavelength, and effective dust temperature. All of the sources in our 250 μm-selected sample have spectroscopic redshifts, as well as 1.4 GHz flux density estimates measured from the Faint Images of the Radio Sky at Twenty centimetres (FIRST) survey. This enables us to study not only individual sources, but also the average properties of the 250 μm-selected population using median stacking techniques. We find that individual sources detected at ≥5σ in both the H-ATLAS and FIRST data have logarithmic flux ratios (i.e. FIRC qλ parameters) consistent with previous studies of the FIRC. In contrast, the stacked values show larger qλ, suggesting excess far-IR flux density/luminosity in 250 μm-selected sources above what has been seen in previous analyses. In addition, we find evidence that 250 μm sources with warm dust spectral energy distributions have a larger 1.4 GHz luminosity than the cooler sources in our sample. Though we find no evidence for redshift evolution of the monochromatic FIRC, our analysis reveals significant temperature dependence. Whilst the FIRC is reasonably constant with temperature at 100 μm, we find increasing inverse correlation with temperature as we probe longer PACS and SPIRE wavelengths. These results may have important implications for the use of monochromatic dust luminosity as a star formation rate indicator in star-forming galaxies, and in the future, for using radio data to determine galaxy star formation ratesPeer reviewe

    Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    Get PDF
    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450um, 870um, 1.4mm, and 2.8mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2Msun). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated to the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.Comment: ApJL accepte
    corecore