113 research outputs found

    Long-term efficacy of botulinum toxin A for treatment of blepharospasm,hemifacial spasm, and spastic entropion: a multicentre study using two drug-dose escalation indexes

    Get PDF
    PURPOSE: To investigate the long-term effectiveness and safety of botulinum neurotoxin A (BoNT-A) treatment in patients with blepharospasm (BEB), hemifacial spasm (HFS), and entropion (EN) and to use for the first time two modified indexes, 'botulin toxin escalation index-U' (BEI-U) and 'botulin toxin escalation index percentage' (BEI-%), in the dose-escalation evaluation. METHODS: All patients in this multicentre study were followed for at least 10 years and main outcomes were clinical efficacy, duration of relief, BEI-U and BEI-%, and frequency of adverse events. RESULTS: BEB, HFS, and EN patients received a mean BoNT-A dose with a significant inter-group difference (P<0.0005, respectively). The mean (+/-SD) effect duration was statistically different (P=0.009) among three patient groups. Regarding the BoNT-A escalation indexes, the mean (+/-SD) values of BEI-U and BEI-% were statistically different (P=0.035 and 0.047, respectively) among the three groups. In BEB patients, the BEI-% was significantly increased in younger compared with older patients (P=0.008). The most frequent adverse events were upper lid ptosis, diplopia, ecchymosis, and localized bruising. CONCLUSIONS: This long-term multicentre study supports a high efficacy and good safety profile of BoNT-A for treatment of BEB, HFS, and EN. The BEI indexes indicate a significantly greater BoNT-A-dose escalation for BEB patients compared with HFS or EN patients and a significantly greater BEI-% in younger vsolder BEB patients. These results confirm a greater efficacy in the elderly and provide a framework for long-term studies with a more flexible and reliable evaluation of drug-dose escalation

    Beyond Genetic Factors in Familial Amyloidotic Polyneuropathy: Protein Glycation and the Loss of Fibrinogen's Chaperone Activity

    Get PDF
    Familial amyloidotic polyneuropathy (FAP) is a systemic conformational disease characterized by extracellular amyloid fibril formation from plasma transthyretin (TTR). This is a crippling, fatal disease for which liver transplantation is the only effective therapy. More than 80 TTR point mutations are associated with amyloidotic diseases and the most widely accepted disease model relates TTR tetramer instability with TTR point mutations. However, this model fails to explain two observations. First, native TTR also forms amyloid in systemic senile amyloidosis, a geriatric disease. Second, age at disease onset varies by decades for patients bearing the same mutation and some mutation carrier individuals are asymptomatic throughout their lives. Hence, mutations only accelerate the process and non-genetic factors must play a key role in the molecular mechanisms of disease. One of these factors is protein glycation, previously associated with conformational diseases like Alzheimer's and Parkinson's. The glycation hypothesis in FAP is supported by our previous discovery of methylglyoxal-derived glycation of amyloid fibrils in FAP patients. Here we show that plasma proteins are differentially glycated by methylglyoxal in FAP patients and that fibrinogen is the main glycation target. Moreover, we also found that fibrinogen interacts with TTR in plasma. Fibrinogen has chaperone activity which is compromised upon glycation by methylglyoxal. Hence, we propose that methylglyoxal glycation hampers the chaperone activity of fibrinogen, rendering TTR more prone to aggregation, amyloid formation and ultimately, disease

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    ORIGIN AND PREVALENCE OF HUMAN T-LYMPHOTROPIC VIRUS TYPE 1 (HTLV-1) AND TYPE 2 (HTLV-2) AMONG INDIGENOUS POPULATIONS IN THE AMERICAS

    Full text link

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Efficacy of Carotid Artery Stenting

    No full text

    Basic Techniques of Endovascular Therapy for Cervical Internal Carotid Stenosis

    No full text

    Carotid Angioplasty Techniques

    No full text
    • …
    corecore