68 research outputs found

    Evaporation and condensation of spherical interstellar clouds. Self-consistent models with saturated heat conduction and cooling

    Full text link
    Shortened version: The fate of IS clouds embedded in a hot tenuous medium depends on whether the clouds suffer from evaporation or whether material condensates onto them. Analytical solutions for the rate of evaporative mass loss from an isolated spherical cloud embedded in a hot tenuous gas are deduced by Cowie & McKee (1977). In order to test the validity of the analytical results for more realistic IS conditions the full hydrodynamical equations must be treated. Therefore, 2D numerical simulations of the evolution of IS clouds %are performed with different internal density structures and surrounded by a hot plasma reservoir. Self-gravity, interstellar heating and cooling effects and heat conduction by electrons are added. Classical thermal conductivity of a fully ionized hydrogen plasma and saturated heat flux are considered. Using pure hydrodynamics and classical heat flux we can reproduce the analytical results. Heat flux saturation reduces the evaporation rate by one order of magnitude below the analytical value. The evolution changes totally for more realistic conditions when interstellar heating and cooling effects stabilize the self-gravity. Evaporation then turns into condensation, because the additional energy by heat conduction can be transported away from the interface and radiated off efficiently from the cloud's inner parts. I.e. that the saturated heat flux consideration is inevitable for IS clouds embedded in hot tenuous gas. Various consequences are discussed in the paper.Comment: 16 pages, 24 figures, accepted in Astronomy and Astrophysic

    Coronal winds powered by radiative driving

    Full text link
    A two-component phenomenological model developed originally for zeta Puppis is revised in order to model the outflows of late-type O dwarfs that exhibit the weak-wind phenomenon. With the theory's standard parameters for a generic weak-wind star, the ambient gas is heated to coronal temperatures ~ 3 x 10^{6}K at radii > 1.4 R, with cool radiativly-driven gas being then confined to dense clumps with filling factor ~ 0.02. Radiative driving ceases at radius ~ 2.1R when the clumps are finally destroyed by heat conduction from the coronal gas. Thereafter, the outflow is a pure coronal wind, which cools and decelerates reaching infinity with terminal velocity ~ 980$ km/ s.Comment: 10 pages, 4 figure

    Stationary models for the extra-planar gas in disc galaxies

    Full text link
    The kinematics of the extra-planar neutral and ionised gas in disc galaxies shows a systematic decline of the rotational velocity with height from the plane (vertical gradient). This feature is not expected for a barotropic gas, whilst it is well reproduced by baroclinic fluid homogeneous models. The problem with the latter is that they require gas temperatures (above 10510^5 K) much higher than the temperatures of the cold and warm components of the extra-planar gas layer. In this paper, we attempt to overcome this problem by describing the extra-planar gas as a system of gas clouds obeying the Jeans equations. In particular, we consider models having the observed extra-planar gas distribution and gravitational potential of the disc galaxy NGC 891: for each model we construct pseudo-data cubes and we compare them with the HI data cube of NGC 891. In all cases the rotational velocity gradients are in qualitative agreement with the observations, but the synthetic and the observed data cubes of NGC 891 show systematic differences that cannot be accommodated by any of the explored models. We conclude that the extra-planar gas in disc galaxies cannot be satisfactorily described by a stationary Jeans-like system of gas clouds.Comment: 14 pages, 7 figures, accepted for pubblication in MNRA

    Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    Full text link
    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutral atoms generates X-ray emission. We assume typical abundance of heavy ions for the Local Bubble plasma and estimate the X-ray emissivity due to charge exchange from the interface between cold neutral cloud and hot plasma. Our results show that charge exchange X-ray emission from the neutral-plasma interfaces can be a non-negligible fraction of the observed X-ray emission.Comment: 9 pages, 7 figure

    The effect of clouds in a galactic wind on the evolution of gas-rich dwarf galaxies

    Full text link
    (Abridged) We study the effects of interstellar clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies. In particular, we focus on two model galaxies similar to IZw18 and NGC1569 in comparison to models in which a smooth initial distribution of gas is assumed. We use a 2-D hydrodynamical code coupled with a series of routines able to trace the chemical products of SNeII, SNeIa and intermediate-mass stars. Clouds are simulated by adding overdense regions in the computational grid, whose locations are chosen randomly and whose density profiles match observed ones. The clouds are inherently dynamically coupled to the diffuse gas, and they experience heat conduction from a hot surrounding gas. Due to dynamical processes and thermal evaporation, the clouds survive only a few tens of Myr. Due to the additional cooling agent, the internal energy of cloudy models is typically reduced by 20 - 40% compared with models of diffuse gas alone. The clouds delay the development of large-scale outflows by mass loading, therefore helping to retain a larger amount of gas inside the galaxy. However, their bullet effect can pierce the expanding supershell and create holes through which the superbubble can vent freshly produced metals. Moreover, assuming a pristine chemical composition for the clouds, their interaction with the superbubble dilutes the gas, reducing the metallicity. The resulting final metallicity is therefore generally lower (by ~ 0.2 - 0.4 dex) than the one attained by diffuse models.Comment: 13 pages, 11 figures, A&A accepte

    Do High-Velocity Clouds trace the Dark Matter subhalo population?

    Full text link
    Within the cosmological concordance model, Cold Dark Matter (CDM) subhalos form the building blocks which merge hierarchically to more massive galaxies. Since intergalactic gas is accreted by massive galaxies, observable e.g. as high- velocity clouds (HVCs) around the Milky Way, with extremely low metallicities, these can be suggested to represent the baryonic content of primordial Dark Matter (DM) subhalos. Another possibility of their origin is that they stem from disrupted satellite galaxies, but in this case, these gas clouds move unaccompanied by a bound DM structure. Since HVCs are observed with long gas tails and with irregular substructures, numerical models are performed aiming at exploring their structure and compare them with observations. If HVCs are engulfed by DM subhalos, their gas must leave the DM gravitational potential and reflect this in their dynamics. On the other hand, the evolution and survival of pure gas models must be tested to distinguish between DM-dominated and DM-free clouds and to allow conclusions on their origin. The models demonstrate that purely baryonic HVCs with low masses are disrupted by ram-pressure stripping and Kelvin-Helmholtz instabilities, while more massive ones survive, losing their initially spherical shape and develop significant substructures including cometary elongations in the column density distribution ("head-tail structure"). On the contrary, HVCs with DM subhalos survive with more than 90% of their gas mass still bound and spherically shaped, approaching the Galactic disk like bullets. In addition, we find that velocity gradients along the cometary head-tail structures does not necessarily offer a possibility to distinguish between DM-dominated and purely gaseous HVCs. Comparison of models with observations let us conclude that HVCs are not embedded in a DM substructure and do not trace the cosmological subhalo population.Comment: Accepted for publication in A&

    The role of the Rayleigh-Taylor instability in ram pressure stripped disk galaxies

    Full text link
    Ram pressure stripping, i.e. the removal of a galaxy's gas disk due to its motion through the intracluster medium of a galaxy cluster, appears to be a common phenomenon. Not every galaxy, however, is completely stripped of its gas disk. If the ram pressure is insufficiently strong, only the outer parts of the gas disk are removed, and the inner gas disk is retained by the galaxy. One example of such a case is the Virgo spiral NGC 4402. Observations of NGC 4402 (Crowl et al. 2005) reveal structures at the leading edge of the gas disk, which resemble the characteristic finger-like structures produced by the Rayleigh-Taylor (RT) instability. We argue, however, that the RT instability is unlikely to be responsible for these structures. We demonstrate that the conditions under which a galaxy's disk gas experiences ram pressure stripping are identical to those that lead to RT instability. If the galaxy's gravity prevents ram pressure stripping of the inner disk, it also prevents the RT instability. In contrast, the stripped gas could still be subject to RT instability, and we discuss consequences for the stripped gas.Comment: accepted by A&

    The evolution of interstellar clouds in a streaming hot plasma including heat conduction

    Full text link
    To examine the evolution of giant molecular clouds in the stream of a hot plasma we performed two-dimensional hydrodynamical simulations that take full account of self-gravity, heating and cooling effects and heat conduction by electrons. We use the thermal conductivity of a fully ionized hydrogen plasma proposed by Spitzer and a saturated heat flux according to Cowie & McKee in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Significant structural and evolutionary differences occur between simulations with and without heat conduction. Dense clouds in pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH) instability. In static models heat conduction leads to evaporation of such clouds. Heat conduction acting on clouds in a gas stream smooths out steep temperature and density gradients at the edge of the cloud because the conduction timescale is shorter than the cooling timescale. This diminishes the velocity gradient between the streaming plasma and the cloud, so that the timescale for the onset of KH instabilities increases, and the surface of the cloud becomes less susceptible to KH instabilities. The stabilisation effect of heat conduction against KH instability is more pronounced for smaller and less massive clouds. As in the static case more realistic cloud conditions allow heat conduction to transfer hot material onto the cloud's surface and to mix the accreted gas deeper into the cloud.Comment: 19 pages, 12 figures, accepted in Astronomy and Astrophysic
    corecore