To examine the evolution of giant molecular clouds in the stream of a hot
plasma we performed two-dimensional hydrodynamical simulations that take full
account of self-gravity, heating and cooling effects and heat conduction by
electrons. We use the thermal conductivity of a fully ionized hydrogen plasma
proposed by Spitzer and a saturated heat flux according to Cowie & McKee in
regions where the mean free path of the electrons is large compared to the
temperature scaleheight. Significant structural and evolutionary differences
occur between simulations with and without heat conduction. Dense clouds in
pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH)
instability. In static models heat conduction leads to evaporation of such
clouds. Heat conduction acting on clouds in a gas stream smooths out steep
temperature and density gradients at the edge of the cloud because the
conduction timescale is shorter than the cooling timescale. This diminishes the
velocity gradient between the streaming plasma and the cloud, so that the
timescale for the onset of KH instabilities increases, and the surface of the
cloud becomes less susceptible to KH instabilities. The stabilisation effect of
heat conduction against KH instability is more pronounced for smaller and less
massive clouds. As in the static case more realistic cloud conditions allow
heat conduction to transfer hot material onto the cloud's surface and to mix
the accreted gas deeper into the cloud.Comment: 19 pages, 12 figures, accepted in Astronomy and Astrophysic