2,185 research outputs found

    Adaptive Embedded LES of the NASA Hump

    Get PDF
    A scheme for adaptive embedded LES is proposed which automatically determines boundaries for LES regions in a hybrid LES-RANS computation, with the goal of minimizing the LES part of the computation for maximum accuracy with minimum cost. The model-invariant hybrid formulation enables this scheme through greater flexibility in the placement of RANS-LES transitions. An adaptive embedded large-eddy simulation is carried out for the NASA hump test case and adaptive meshing is added to show how additional adaptive features may be controlled by the adaptive hybrid scheme

    The cohomology of Deligne-Lusztig varieties for the general linear group

    Full text link
    We propose two inductive approaches for determining the cohomology of Deligne-Lusztig varieties in the case of the general linear groupComment: 90 pages, revised version, Prop. 5.15 is removed, Thm. 7.18 is correcte

    The vibrational dynamics of vitreous silica: Classical force fields vs. first-principles

    Full text link
    We compare the vibrational properties of model SiO_2 glasses generated by molecular-dynamics simulations using the effective force field of van Beest et al. (BKS) with those obtained when the BKS structure is relaxed using an ab initio calculation in the framework of the density functional theory. We find that this relaxation significantly improves the agreement of the density of states with the experimental result. For frequencies between 14 and 26 THz the nature of the vibrational modes as determined from the BKS model is very different from the one from the ab initio calculation, showing that the interpretation of the vibrational spectra in terms of calculations using effective potentials can be very misleading.Comment: 7 pages of Latex, 4 figure

    Web Service Discovery in a Semantically Extended UDDI Registry: the Case of FUSION

    Get PDF
    Service-oriented computing is being adopted at an unprecedented rate, making the effectiveness of automated service discovery an increasingly important challenge. UDDI has emerged as a de facto industry standard and fundamental building block within SOA infrastructures. Nevertheless, conventional UDDI registries lack means to provide unambiguous, semantically rich representations of Web service capabilities, and the logic inference power required for facilitating automated service discovery. To overcome this important limitation, a number of approaches have been proposed towards augmenting Web service discovery with semantics. This paper discusses the benefits of semantically extending Web service descriptions and UDDI registries, and presents an overview of the approach put forward in project FUSION, towards semantically-enhanced publication and discovery of services based on SAWSDL

    Coulomb parameters and photoemission for the molecular metal TTF-TCNQ

    Full text link
    We employ density-functional theory to calculate realistic parameters for an extended Hubbard model of the molecular metal TTF-TCNQ. Considering both intra- and intermolecular screening in the crystal, we find significant longer-range Coulomb interactions along the molecular stacks, as well as inter-stack coupling. We show that the long-range Coulomb term of the extended Hubbard model leads to a broadening of the spectral density, likely resolving the problems with the interpretation of photoemission experiments using a simple Hubbard model only.Comment: 4 pages, 2 figure

    Hecke Groups, Dessins d’Enfants and the Archimedean Solids

    Get PDF
    Grothendieck’s dessins d’enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts

    Securing a Wireless Site Network to Create a BIM-allied Work-front

    Get PDF
    The Building Information Model (BIM) serves as a framework to align all the project-related data, providing interoperability to store and retrieve information interactively. Unfortunately, the construction site itself is excluded from this interaction as the large amount of data requires high data transfer rates and ruggedized hardware. However, advanced wireless communication technologies open radically new avenues to relay large amounts of data automatically and in near real-time. Construction could be a key beneficiary of these advancements. Wireless communication integrated with BIM, GPS and the Internet is able to provide the backbone necessary for creating intelligent systems, supporting the designer in his or her office as well as workers on the work-front. This paper presents a study that documents the development and testing of prototypes designed to facilitate information sharing at the field-level during construction. The main system constitutes an information hub, called the eCKiosk, connecting “senders and receivers” both on-site as well as off-site. The system design is discussed and some of the main modules are demonstrated. Since the electronic Kiosk depends on robust connections to the wireless devices distributed across the site, reliable connectivity is essential. For this reason, the discussion includes a study of the electronic signals behaviour in an ever-changing construction site. Measurements of the signal strengths during excavation and concrete work are presented and compared with theoretical calculations used to predict wave propagation. The results show how present models overestimate signal attenuation patterns on the construction site. This is important for designing a reliable and secure wireless site networks to link BIM to the work-front

    A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

    Full text link
    We present formalized proofs verifying that the first-order unification algorithm defined over lists of satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent. All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite maps produced by the unification algorithm provide a model of the axioms characterizing idempotent MGUs of lists of constraints. The axioms that serve as the basis for our verification are derived from a standard set by extending them to lists of constraints. For us, constraints are equalities between terms in the language of simple types. Substitutions are formally modeled as finite maps using the Coq library Coq.FSets.FMapInterface. Coq's method of functional induction is the main proof technique used in proving many of the axioms.Comment: In Proceedings UNIF 2010, arXiv:1012.455

    Verification and Validation of a Three-Dimensional Composite Impact Model with Tabulated Input

    Get PDF
    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in the commercial transient dynamic finite element code LS-DYNA has been developed. The material model utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure, which allows an arbitrarily shaped failure surface to be defined. A systematic series of validation and verification studies, at a variety of length scales ranging from single element simulations to simulations of a flat panel impact test, have been performed to fully exercise and evaluate the capabilities of the developed model
    • …
    corecore