
He, Y. & Read, J. (2015). Hecke Groups, Dessins d’Enfants and the Archimedean Solids. Frontiers 

in Physics, 3, .91. doi: 10.3389/fphy.2015.00091 

City Research Online

Original citation: He, Y. & Read, J. (2015). Hecke Groups, Dessins d’Enfants and the 

Archimedean Solids. Frontiers in Physics, 3, .91. doi: 10.3389/fphy.2015.00091 

Permanent City Research Online URL: http://openaccess.city.ac.uk/12866/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42629451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Hecke Groups, Dessins d’Enfants and the

Archimedean Solids

Yang-Hui He1,2∗ and James Read1†

1Merton College, University of Oxford, OX1 4JD, UK

2Department of Mathematics, City University, London,

Northampton Square, London EC1V 0HB, UK;

School of Physics, NanKai University, Tianjin, 300071, P.R. China;

Abstract

Grothendieck’s dessins d’enfants arise with ever-increasing frequency in many

areas of 21st century mathematical physics. In this paper, we review the connec-

tions between dessins and the theory of Hecke groups. Focussing on the restricted

class of highly symmetric dessins corresponding to the so-called Archimedean

solids, we apply this theory in order to provide a means of computing represen-

tatives of the associated conjugacy classes of Hecke subgroups in each case. The

aim of this paper is to demonstrate that dessins arising in mathematical physics

can point to new and hitherto unexpected directions for further research. In ad-

dition, given the particular ubiquity of many of the dessins corresponding to the

Archimedean solids, the hope is that the computational results of this paper will

prove useful in the further study of these objects in mathematical physics contexts.
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1 Introduction

Grothendieck’s dessins d’enfants – bipartite graphs drawn on Riemann surfaces – arise

with ever-increasing frequency in 21st century mathematical physics, appearing in e.g. the

study ofN = 2 supersymmetric gauge theories [1–3], elliptically fibred Calabi-Yaus [4–6],

toric conformal field theories [7, 8], topological strings [9, 10], and elsewhere. Given this

growing ubiquity, it is valuable to study both the basic theory of dessins, and the appli-

cations of this theory to particularly significant cases. This paper aims to achieve both

such goals, by first reviewing the mathematical results which connect dessins d’enfants

to the theory of Hecke groups, before applying this work to the dessins for the so-called

Archimedean solids. The hope is to provide a compendium of computational results to

aid future research featuring these objects.

With the above in mind, let us begin our story by recalling that the Platonic solids

are the convex polyhedra with equivalent faces composed of congruent convex regular

polygons; these objects have been known and studied for millennia. These solids also

appear in mathematical physics: for example, the symmetries of the Platonic solids

are related to D-brane orbifold theories [11]. Now, more broadly, another well-known

class of convex polyhedra are the Archimedean solids: the semi-regular convex polyhedra

composed of two or more types of regular polygons meeting in identical vertices, with no

requirement that faces be equivalent. There are three categories of such Archimedean

solids: (I) the Platonic solids; (II) two infinite series solutions – the prisms and anti-

prisms; and (III) fourteen further exceptional cases.

In [12], a novel approach to the Archimedean solids was taken by interpreting the

graphs of these solids as clean dessins d’enfants. By clean, we mean that all the nodes

of one of the two possible colours of the bipartite graph have valency two [13,14]. Now,

the planar graph of any polytope can be interpreted as a clean dessin by inserting a

black node into every edge of the graph, and colouring every vertex white. In this way,

one can construct dessins for all the Archimedean solids. In each case, the underlying

Riemann surface is the sphere CP
1, and the dessins are drawn in a planar projection.

In a parallel vein, trivalent clean dessins can be associated to conjugacy classes

of subgroups of the modular group Γ = PSL (2,Z). (Recall that the modular group
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Γ ≡ Γ (1) is the group of linear fractional transformations z → az+b
cz+d

, with a, b, c, d ∈ Z

and ad − bc = 1. The presentation of Γ is 〈x, y|x2 = y3 = I〉.) To do so, we replace

all n-valent vertices of the dessin with oriented n-gons. This constructs a Schreier

coset graph, which displays the permutation action of generators x and y on each coset

Gxi of PSL (2,Z) =
⋃

i Gxi, i = 1, . . . , µ, where µ is the index of some subgroup G

in PSL (2,Z) [15]. Generalising, any clean dessin (not necessarily trivalent) can be

associated with a conjugacy class of subgroups of a certain so-called Hecke group Hn,

defined as having presentation 〈x, y|x2 = yn = I〉.

Once a Hecke subgroup G has been associated to the dessin in question, further

results follow. For example, one can quotient the upper half plane by G to construct

the surface H/G. From this, one can construct a Belyi map (in a manner detailed in

the main body of this paper), i.e. a holomorphic map to P
1 ramified at only {0, 1,∞}.

To each Belyi map there corresponds a unique dessin; precisely the dessin with which

we began! Hence, this chain of connections compactifies to a circle.

Returning now to the Archimedean solids, we see that, interpreting these as dessins,

we should be able to explore the above circle of connections via explicit computations.

Indeed, the Belyi maps associated to these dessins have already been computed in [12];

therefore, our task is to complete the circle by computing representatives of the conjugacy

classes of Hecke subgroups associated to these objects. Not only will this provide an

illustration of this aspect of the mathematical theory underlying dessins, but it will

also provide a useful resource for further research in this area. Indeed, given that some

dessins for the Archimedean solids have have already arisen in areas of mathematical

physics (see for example [3,4,6]), it is not unreasonable to expect that such dessins will

continue to manifest themselves in future research.

The structure of this paper is as follows. In section 2 we present some technical details

regarding Hecke groups and dessins d’enfants. We show that it is possible to interpret

each clean dessin as the Schreier coset graph for a conjugacy class of subgroups of a

certain Hecke group, and review the circle of connections mentioned above. In section 3,

we find the permutation representations for the conjugacy classes of subgroups of Hecke

groups corresponding to every Archimedean solid, and provide an algorithm to compute

explicit generating sets of matrices for representatives of these conjugacy classes in each
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case. In section 4, we close with some conclusions, returning to the specific applications

of this work in various subfields of mathematical physics.

2 Dessins d’Enfants and Hecke Groups

In this section, we review some essential details regarding both Hecke groups and clean

dessins d’enfants. We begin by considering the modular group Γ ∼= H3, as although

this is isomorphic to only one particular Hecke group, it is by far the most well-studied,

and we shall draw upon the presented results at several points in the ensuing discussion.

Subsequently, we discuss Hecke groups more generally, before moving on to consider clean

dessins and their associated Belyi maps. Note that the connection between trivalent

dessins and the modular group is discussed in [16,17], while the relation between Hecke

groups and maps is discussed in e.g. [18, 19]. With these results in hand, we describe

how every clean dessin is isomorphic to the Schreier coset graph for a conjugacy class of

subgroups of a Hecke group, and how the circle of connections closes via a correspondence

between such subgroups and the Belyi maps for the original dessins.

2.1 The Modular Group

To begin, let us recall some essential details regarding the modular group Γ. This is

the group of linear fractional transformations Z ∋ z → az+b
cz+d

, with a, b, c, d ∈ Z and

ad− bc = 1. It is generated by the transformations T and S defined by:

T (z) = z + 1 , S(z) = −1/z . (2.1)

The presentation of Γ is
〈

S, T |S2 = (ST )3 = I
〉

, and we will later discuss the presen-

tations of certain modular subgroups. The 2 × 2 matrices for S and T are as follows:

T =

(

1 1

0 1

)

, S =

(

0 −1

1 0

)

. (2.2)

Letting x = S and y = ST denote the elements of order 2 and 3 respectively, we see
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that Γ is the free product of the cyclic groups C2 = 〈x|x2 = I〉 and C3 = 〈y|y3 = I〉. It
follows that 2× 2 matrices for x and y are:

x =

(

0 −1

1 0

)

, y =

(

0 −1

1 1

)

. (2.3)

With these details in hand, we can consider some important subgroups of Γ.

2.1.1 Congruence Modular Subgroups

The most significant subgroups of Γ are the congruence subgroups, defined by having

the the entries in the generating matrices S and T obeying some modular arithmetic.

Some conjugacy classes of congruence subgroups of particular note are the following:

• Principal congruence subgroups:

Γ (m) := {A ∈ SL(2;Z) ; A ≡ ±I mod m} / {±I} ;

• Congruence subgroups of level m: subgroups of Γ containing Γ (m) but not any

Γ (n) for n < m;

• Unipotent matrices:

Γ1 (m) :=

{

A ∈ SL(2;Z) ; A ≡ ±
(

1 b

0 1

)

mod m

}

/ {±I} ;

• Upper triangular matrices:

Γ0 (m) :=

{(

a b

c d

)

∈ Γ ; c ≡ 0 mod m

}

/ {±I} .

• The congruence subgroups

Γ
(

m;
m

d
, ǫ, χ

)

:=

{

±
(

1 + m
ǫχ
α dβ

m
χ
γ 1 + m

ǫχ
δ

)

; γ ≡ α mod χ

}
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for certain choices of m, d, ǫ, χ (see [4, 6]).

We note here that:

Γ (m) ⊆ Γ1 (m) ⊆ Γ0 (m) ⊆ Γ . (2.4)

In section 3 of this paper, we shall remark on the connections between some specific

conjugacy classes of congruence modular subgroups and the Archimedean solids.

2.2 Hecke Groups

We can now extend our discussion of the modular group Γ ∼= H3 to the more general

Hecke groups Hn. The Hecke group Hn has presentation 〈x, y|x2 = yn = I〉, and is thus

the free product of cyclic groups C2 = 〈x|x2 = I〉 and Cn = 〈y|yn = I〉. Note that

Γ ∼= H3 where Γ is the modular group; and that Hn is the triangle group (2, n,∞). Hn

is generated by transformations T and S now defined by:

T (z) = z + λn , S(z) = −1/z , (2.5)

where λn is some real number to be determined. The 2× 2 matrices for these S and T

are:

T =

(

1 λn

0 1

)

, S =

(

0 −1

1 0

)

. (2.6)

Letting x = S and y = ST as in our discussion of Γ, we see that 2 × 2 matrices for

x and y are:

x =

(

0 −1

1 0

)

, y =

(

0 −1

1 λn

)

. (2.7)

For Hn, we clearly have (ST )n = I, thereby constraining λn for a given n [20].

Diagonalising y to compute yn explicitly places a constraint which allows for a solution

of λn; we find the following general expression, as well as some important values for
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small n:

λn = 2 cos (π/n) ,
n 3 4 5 6

λn 1
√
2 1+

√
5

2

√
3

(2.8)

In particular, the λn are algebraic numbers.

2.2.1 Congruence Subgroups of Hecke Groups

By way of extension of the above discussion of subgroups of the modular group Γ, it is

useful to consider congruence subgroups of Hecke groups. The Hecke groups are discrete

subgroups of PSL (2,R); in fact, the matrix entries are in Z [λn], the extension of the

ring of integers by the algebraic number λn. Note that:

Hn ⊂ PSL (2,Z [λn]) . (2.9)

However, unlike the special case of the modular group, this inclusion is strict. With this

point in mind, we can define the congruence subgroups of Hecke groups in the following

way [20]. Let I be an ideal of Z [λn]. We then define:

PSL (2,Z [λn] , I) =

{(

a b

c d

)

∈ PSL (2,Z [λn]) ; a− 1, b, c, d− 1 ∈ I

}

. (2.10)

By analogy, we also define:

PSL1 (2,Z [λn] , I) =

{(

a b

c d

)

∈ PSL (2,Z [λn]) ; a− 1, c, d− 1 ∈ I

}

(2.11)

PSL0 (2,Z [λn] , I) =

{(

a b

c d

)

∈ PSL (2,Z [λn]) ; c ∈ I

}

. (2.12)

Then we can define the congruence subgroups Hn (m), H1
n (m) and H0

n (m) of Hn as
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follows:

Hn (I) = PSL (2,Z [λn] , I) ∩Hn ; (2.13)

H1
n (I) = PSL1 (2,Z [λn] , I) ∩Hn ; (2.14)

H0
n (I) = PSL0 (2,Z [λn] , I) ∩Hn . (2.15)

We have:

Hn (I) ⊆ H1
n (I) ⊆ H0

n (I) ⊆ Hn . (2.16)

By analogy with our discussion of the modular group, we define congruence subgroups

of level m of the Hecke group Hn as subgroups of Hn containing Hn (m) but not any

Hn (p) for p < m [21]. With these details regarding Hecke groups and their subgroups

in hand, we can now consider their connections to clean dessins d’enfants.

2.3 Dessins d’Enfants and Belyi Maps

A dessin d’enfant in the sense of Grothendieck is an ordered pair 〈X,D〉, where X is an

oriented compact topological surface and D ⊂ X is a finite graph satisfying the following

conditions [13]:

1. D is connected.

2. D is bipartite, i.e. consists of only black and white nodes, such that vertices con-

nected by an edge have different colours.

3. X \ D is the union of finitely many topological discs, which we call the faces.

We can interpret any polytope as a dessin by inserting a black node into every edge,

and colouring all vertices white. This process of inserting into each edge a bivalent node

of a certain colour is standard in the study of dessins d’enfants and gives rise to so-called

clean dessins, i.e. those for which all the nodes of one of the two possible colours have

valency two. An example of this procedure for the cube is shown in Figure 1.
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(a): The planar graph for the cube. (b): The corresponding clean dessin.

Figure 1: Interpreting the planar graph of the cube as a clean dessin.

There is a one-to-one correspondence between dessins d’enfants and Belyi maps

[13, 16, 17]. A Belyi map is a holomorphic map to P
1 ramified at only {0, 1,∞}, i.e. for

which the only points x̃ where d
dx
β (x) |x̃ = 0 are such that β (x̃) ∈ {0, 1,∞}. We can

associate a Belyi map β (x) to a dessin via its ramification indices : the order of vanishing

of the Taylor series for β (x) at x̃ is the ramification index rβ(x̃)∈{0,1,∞} (i) at that ith

ramification point [4,6]. To draw the dessin from the map, we mark one white node for

the ith pre-image of 0, with r0 (i) edges emanating therefrom; similarly, we mark one

black node for the jth pre-image of 1, with r1 (j) edges. We connect the nodes with

the edges, joining only black with white, such that each face is a polygon with 2r∞ (k)

sides [6]. The converse direction (from dessins to Belyi maps) is detailed in e.g. [22].

For more information on dessins and Belyi maps, the reader is referred to [13, 23–25].

2.4 Schreier Coset Graphs

As discussed, the Hecke group Hn has presentation 〈x, y|x2 = yn = I〉, and is thus the

free product of cyclic groups C2 = 〈x|x2 = I〉 and Cn = 〈y|yn = I〉. Given the free

product structure of Hn, we see that its Cayley graph is an infinite free n-valent tree,

but with each node replaced by an oriented n-gon. Now, for any finite index subgroup G

of Hn, we can quotient the Cayley graph to arrive at a finite graph by associating nodes

to right cosets and edges between cosets which are related by action of a group element.
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In other words, this graph encodes the permutation representation of Hn acting on the

right cosets of G. This is called a Schreier coset graph, sometimes also referred to in the

literature as a Schreier-Cayley coset graph, or simply a coset graph.

As detailed in [26], there is a direct connection between the Schreier coset graphs

and the dessins d’enfants for each class of Hecke subgroups: the dessins d’enfants for

a certain conjugacy class of subgroups of a Hecke group Hn can be constructed from

the Schreier coset graphs by replacing each positively oriented n-gon with a white node,

and inserting a black node into every edge. Conversely, the Schreier coset graphs can

be constructed from the dessins by replacing each white node with a positively oriented

n-gon, and removing the black node from every edge.

With the above in mind, now consider the permutations induced by the respective

actions of x and y on the cosets of each Hecke subgroup; denote these by σ0 and σ1,

respectively. We can find a third permutation σ∞ by imposing the following condition,

thereby constructing a permutation triple [16, 17]:

σ0 · σ1 · σ∞ = 1 . (2.17)

The permutations σ0, σ1 and σ∞ give the permutation representations of Hn on the

right cosets of each subgroup in question. As elements of the symmetric group, σ0 and

σ1 can be easily computed from the Schreier coset graphs by following the procedure

elaborated in [27], i.e. by noting that the doubly directed edges represent an element x of

order 2, while the positively oriented triangles represent an element y of order n. Since

the graphs are connected, the group generated by x and y is transitive on the vertices.

Clearly, σ0 and σ1 tell us which vertex of the coset graph is sent to which, i.e. which

coset of the Hecke subgroup in question is sent to which by the action of Hn on the right

cosets of this subgroup.

2.5 Belyi Maps from Hecke Subgroups

Let G be a torsion-free subgroup of Hn of finite index (i.e. a subgroup that contains

no element of finite order other than the identity). Then, the compact surface XG is
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obtained from the surface H/G (where H is the upper half plane) by adding finitely

many cusps, one for each G-orbit of boundary points at which the stabiliser is non-

trivial. Now, the holomorphic projection π : H/G → H/Hn
∼= C extends to a Belyi

map β : XG → P
1 from the compactification, with each cusp of XG mapped by β to the

single cusp {∞} of Hn which compactifies the plane H/Hn to C ∪ ∞ = P
1. [28] This

Belyi map is precisely the Belyi map uniquely corresponding to the dessin associated

to Hn in the manner already detailed. Hence, our chain of connections between Hecke

groups and dessins d’enfants has come full circle: a dessin gives a Schreier coset graph,

which gives a conjugacy class of Hecke subgroups, G. Then, the surface H/G yields a

compactification XG, with associated Belyi map β : XG → P
1. The dessin uniquely

associated to this Belyi map is the original dessin from which we began.

3 Hecke Subgroups and Archimedean Solids

Having reviewed the theory connecting dessins d’enfants with Hecke subgroups, we can

now apply this theory to the particular case of the Archimedean solids. In this section,

we first give a precise definition of these geometrical entities. We then identify the

conjugacy class of Hecke subgroups corresponding to each Archimedean solid, by giving

the permutation representations σ0 and σ1 for each such class. Finally, we discuss some

interesting aspects of these results.

3.1 Platonic and Archimedean Solids

The Platonic solids are the regular, convex polyhedra; they are the tetrahedron, cube,

octahedron, dodecahedron and icosahedron. In order to introduce the wider class of

Archimedean solids, consider planar graphs without loops, and with vertices of degree

k > 2. Following [12], let us call the list of numbers (f1, f2, . . . , fk), where the fi are the

number of edges of the adjacent faces taken in the counter-clockwise direction around

the vertex, the type of that vertex. Two such lists are equivalent if one can be obtained

from the other by (a) making a cyclic shift and (b) inverting the order of the fi. A solid
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is called Archimedean if the types of all its vertices are equivalent [12].1

We emphasise a subtlety here. One informal way of defining the Archimedean solids is

as the semi-regular convex polyhedra composed of two or more types of regular polygons

meeting in identical vertices, with no requirement that faces be equivalent. Identical

vertices is usually taken to mean that for any two vertices, there must be an isometry

of the entire solid that takes one vertex to the other. Sometimes, however, it is only

required that the faces that meet at one vertex are related isometrically to the faces that

meet at the other. On the former definition, the so-called pseudorhombicuboctahedron,

also known as the elongated square gyrobicupola, is not considered an Archimedean solid;

on the latter it is. The formal definition of the Archimedean solids above corresponds

to the latter definition here; it is this latter definition which which we shall use.

The solids which satisfy the condition for being Archimedean are:

I The five Platonic solids;

II Two infinite series (the prisms and anti-prisms);

III Fourteen exceptional solutions.2

All these solids are listed in table (1). For completeness, we also give the symmetry

groups of each of these solids in the column labelled ‘Sym’, written in Schönflies notation.

Here, we recognise the standard tetrahedral, octahedral and icosahedral groups:

T ≃ A4 , O ≃ S4 , I ≃ A5 , (3.1)

as well as the dihedral group Dn. The subscripts d and h denote extra symmetries about

a horizontal (h) or diagonal (d) plane.

1It is worth listing some classical sources on the Archimedean solids. Theses objects were first
discussed by Archimedes, in a now lost work to which Pappus refers [29]. In the 15th century, the
solids were rediscovered by Kepler [30]. Classical geometers who discuss the Archimedean solids include
Sommerville [31] and Miller [29].

2An interesting aside: It is known that the five Platonic solids correspond to three symmetry groups,
which in turn are related to the exceptional Lie algebras E6,7,8, and furthermore to Arnold’s simple
surface singularities with no deformations [32]. It is curious that the next order generalisation of
the simple singularities, with exactly one deformation modulus, has fourteen exceptional cases. We
conjecture, therefore, some connection to the exceptional Archimedean solids.
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Name V Vertex type F E Sym Hecke Group

I Tetrahedron 4 (3, 3, 3) 4 6 Td H3

I Cube 8 (4, 4, 4) 6 12 Oh H3

I Octahedron 6 (3, 3, 3, 3) 8 12 Oh H4

I Dodecahedron 20 (5, 5, 5) 12 30 Ih H3

I Icosahedron 12 (3, 3, 3, 3, 3) 20 30 Ih H5

II n-prism 2n (4, 4, n) n+ 2 3n Dnh H3

II n-antiprism 2n (3, 3, 3, n) 2n+ 2 4n Dnd H4

III Truncated tetrahedron 12 (3, 6, 6) 8 18 Td H3

III Truncated cube 24 (3, 8, 8) 14 36 Oh H3

III Truncated octahedron 24 (4, 6, 6) 14 36 Oh H3

III Truncated isocahedron 60 (5, 6, 6) 32 90 Ih H3

III Truncated dodecahedron 60 (3, 10, 10) 32 90 Ih H3

III Truncated cuboctahedron 48 (4, 6, 8) 26 72 Oh H3

III Truncated icosidodecahedron 120 (4, 6, 10) 62 180 Ih H3

III Cuboctahedron 12 (3, 4, 3, 4) 14 24 Oh H4

III Icosidodecahedron 30 (3, 5, 3, 5) 32 60 Ih H4

III Rhombicuboctahedron 24 (3, 4, 4, 4) 26 48 Oh H4

III Rhombicosidodecahedron 60 (3, 4, 5, 4) 62 120 Ih H4

III Pseudorhombicuboctahedron 24 (3, 4, 4, 4) 26 48 D4d H4

III Snub cube 24 (3, 3, 3, 3, 4) 38 60 O H5

III Snub dodecahedron 60 (3, 3, 3, 3, 5) 92 150 I H5

Table 1: The Archimedean solids. Type I are the five Platonic solids. Type II are the two

infinite families: the prisms and anti-prisms. Type III are the fourteen exceptional solids. We

record the number of vertices V , faces F and edges E in each case. The vertex type is the

number of edges of the adjacent faces to the vertex, taken counter-clockwise; the fact that

all vertices have the same vertex type is the definition of Archimedean. ‘Sym’ denotes the

symmetry group of the solid, given in Schönflies notation. We also indicate the associated

Hecke group, determined by the valency of the vertices of each solid.

3.2 Hecke Subgroups for the Archimedean Solids

As discussed, we can interpret all the Archimedean solids as clean dessins d’enfants

by inserting a black node into every edge and colouring every vertex white. By the

correspondences detailed in the previous section, we should then be able to associate

a class of Hecke subgroups to every Archimedean solid. To achieve this, we begin by

converting the dessins for these solids to Schreier coset graphs, reading off the associated

permutations σ0 and σ1 for the conjugacy class of subgroups of the relevant Hecke group

in each case; these results are tabulated in appendix A. Next, we find a representative of

the conjugacy class of subgroups of the relevant Hecke group in each case by inputting

the permutations σ0 and σ1 into the GAP [33] algorithm presented in appendix B. This

yields a representative of the conjugacy classes of subgroups in each case.
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To illustrate this procedure, consider the specific example of the octahedron. In-

putting the permutations for the octahedron into the algorithm of appendix B yields

the following generators for a representative of the conjugacy class of subgroups of H4

associated to this solid:

{(

−1 0

3
√
2 −1

)

,

(

1 −3
√
2

0 1

)

,

(

−7 −3
√
2

6
√
2 5

)

,

(

−7 −6
√
2

3
√
2 5

)

,

(

5 −6
√
2

3
√
2 −7

)

,

(

5 −3
√
2

6
√
2 −7

)

,

(

11 −15
√
2

−15
√
2 41

)}

. (3.2)

Note that comparison with our results concerning congruence subgroups of Hecke

groups in section (2.2) reveals that the octahedron corresponds to the principal congru-

ence subgroup H4 (3). Repeating this procedure for all Archimedean solids, we find a

number of results worthy of comment:

• While the octahedron corresponds to the conjugacy class of Hecke subgroups

H4 (3), no other Archimedean solid is readily associated with congruence Hecke

subgroups in an analogous manner.

• From section (2.2), the matrices of H4 are of the following two types:

(

a b
√
2

c
√
2 d

)

,

(

a
√
2 b

c d
√
2

)

(3.3)

The elements of the first type form a subgroup of index 2 in H4; all the subgroups

of H4 corresponding to the Archimedean solids turn out to be subgroups of this

subgroup.

• We have seen that, interpreted as dessins, the tetrahedron, cube and dodecahedron

correspond to the conjugacy classes of subgroups Γ (3), Γ (4) and Γ (5), respectively

[6]. In addition to these three arising as the dessins corresponding to certain

congruence subgroups of the modular group, the dessins for the 33 conjugacy

classes of genus zero, torsion-free congruence subgroups (discussed in detail in

15



[6]) reveal that other Archimedean solids also correspond to certain conjugacy

classes of congruence subgroups of the modular group. Specifically, the truncated

tetrahedron is associated with the modular subgroup Γ0 (2) ∩ Γ (3), while the 8-

prism is associated with the subgroup Γ (8; 2, 1, 2). Given this, the question arises

as to whether the other trivalent Archimedean solids can also be associated with

congruence subgroups of the modular group. This can be checked in Sage [34]

using the permutations σ0 and σ1 as input; doing so, we find that the answer to

this question is in general negative. As a more specific result, we find that the

truncated tetrahedron is the only trivalent, exceptional Archimedean solid which

corresponds to a conjugacy class of congruence subgroups of the modular group.

4 Conclusions

In this paper, we have reviewed the connections between dessins d’enfants and Hecke

subgroups. We have applied this theory to the case of the Archimedean solids, showing

how, through interpretation as clean dessins, each of these geometric objects can be

associated with a conjugacy class of subgroups of Hecke groups. In addition to opening

up one more area of research into the Archimedean solids, this work is useful from the

point of view of mathematical physics, as it can help to shed new light on cases where

dessins naturally arise in physical contexts. To take two examples:

1. Certain N = 2 supersymmetric gauge theories in four dimensions [35,36] naturally

give rise to trivalent dessins [3] (including Archimedean dessins); with the theory

of this paper in mind, this suggests an otherwise overlooked connection between

these gauge theories and modularity.

2. In [4–6], it is shown that certain Calabi-Yaus give rise to clean, trivalent dessins,

including many Archimedean dessins. Again, the theory of this paper therefore

suggests a connection between the theory of Hecke groups and these Calabi-Yaus.

The general lessson is the following: given the growing ubiquity of dessins in math-

ematical physics, it is important to be clear and explicit on the connections of these

16



objects to other areas of mathematics. Hence, it is important to illustrate the theory

underlying these connections. It is particularly useful to lay out this theory explicitly in

special cases such as that of the Archimedean solids, which we expect (on both inductive

grounds and grounds of simplicity) to arise with greatest frequency in physical contexts.
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A Permutations for the Archimedean Solids

In this appendix, we present the permutations σ0 and σ1 corresponding to the conjugacy

classes of Hecke subgroups for each of the Archimedean solids. Although it is in principle

easy to read these permutations off from the Schreier coset graphs in the manner detailed

in section (2.4), the procedure is extremely time-consuming, so it is worth presenting the

results in full here. The method for computing explicit generators for a representative

of each class of subgroups is detailed in the following appendix.

As a technical point, note that we have just presented the permutations σ0 in each

case. The permutations σ1 can be written down by populating 2E/n n-tuples with

numerals in ascending order from 1 to 2E, where E is the number of edges of the

solid, and Hn is the associated Hecke group as given in table (1). So, for example, the

permutations σ1 for the octahedron are: (1, 2, 3, 4) (5, 6, 7, 8) (9, 10, 11, 12) (13, 14,

15, 16) (17, 18, 19, 20) (21, 22, 23, 24).
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A.1 Platonic Solids

Interpreted as clean dessins d’enfants, the tetrahedron, cube, and dodecahedron corre-

spond to the conjugacy classes of principal congruence subgroups Γ (3), Γ (4) and Γ (5),

respectively [6]. In addition, from table (1) we can see that the remaining two Pla-

tonic solids – the octahedron and the icosahedron – correspond to conjugacy classes of

subgroups of H4 and H5, respectively.
3 The permutations σ0 for these classes are:

Octahedron: (1, 5) (6, 11) (4, 12) (2, 13) (3, 23) (8, 14) (7, 18) (10, 19) (9, 22) (16,

24) (15, 17) (20, 21)

Icosahedron: (1, 6) (10, 11) (5, 15) (2, 21) (3, 16) (4, 43) (7, 22) (8, 27) (9, 33) (12,

34) (13, 37) (14, 42) (17, 25) (23, 26) (28, 32) (35, 36) (38, 41) (20, 44) (18, 46) (24, 47)

(30, 48) (29, 52) (31, 53) (40, 54) (39, 57) (45, 58) (19, 59) (50, 60) (55, 56) (49, 51)

A.2 Prisms and Antiprisms

The prisms and antiprisms form infinite series of Archimedean solids. Since all prisms

are trivalent, all correspond to a conjugacy class of subgroups of Γ; since all antiprisms

are 4-valent, all correspond to a conjugacy class of subgroups of H4. We can construct

general expressions for the permutations σ0 and σ1 for the prisms and antiprisms. These

expressions can be used to find the permutations σ0 and σ1 for any particular (anti)prism

of interest.

3Of course, one should note that the octahedron and icosahedron could also be defined as subgroups
of the modular group Γ, as their duals are trivalent.
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Prisms: Call the n-gon faced prism the n-prism. The n-prism has the following per-

mutations σ0 and σ1:

σ0 : (3n− 2, 3) (3n− 1, 6n− 2) (6n− 1, 3n+ 3)

·
n−2
∏

i=0

(3i+ 1, 3i+ 6) (3i+ 2, 3n+ 3i+ 1) (3n+ 3i+ 2, 3n+ 3i+ 6)

σ1 :
n+2
∏

i=0

(3i+ 1, 3i+ 2, 3i+ 3) . (A.1)

Antiprisms: Call the n-gon faced anti-prism the n-antiprism. The n-antiprism has

the following permutations σ0 and σ1:

σ0 : (4n− 3, 4) (4n− 2, 8n− 2) (3, 8n− 1) (4n+ 1, 8n)

·
n−2
∏

i=0

(4i+ 1, 4i+ 8) (4i+ 2, 4n+ 4i+ 2) (4i+ 7, 4n+ 4i+ 3) (4n+ 4i+ 4, 4n+ 4i+ 5)

σ1 :
n+2
∏

i=0

(4i+ 1, 4i+ 2, 4i+ 3, 4i+ 4) . (A.2)

A.3 Exceptional Archimedean Solids

In addition to the Platonic solids and the prisms and antiprisms, there remain fourteen

exceptional Archimedean solids, as given in table (1). Here we give the permutations σ0

for each corresponding class of Hecke subgroups.

Truncated tetrahedron: (1, 32) (3, 4) (2, 7) (5, 9) (6, 24) (8, 10) (11, 13) (12, 18)

(15, 16) (17, 19) (14, 28) (29, 31) (33, 34) (30, 36) (26, 35) (20, 25) (23, 27) (21, 22)

Truncated cube: (3, 4) (2, 7) (5, 9) (60, 61) (63, 55) (57, 58) (20, 22) (21, 27) (24,

25) (11, 13) (12, 18) (15, 16) (39, 45) (43, 42) (38, 40) (30, 31) (29, 35) (32, 34) (66, 72)
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(65, 68) (67, 70) (48, 49) (47, 53) (50, 52) (1, 59) (62, 64) (69, 54) (51, 6) (41, 46) (8,

10) (56, 23) (36, 71) (33, 37) (17, 44) (14, 19) (26, 28)

Truncated octahedron: (1, 11) (2, 4) (5, 8) (9, 10) (12, 13) (3, 36) (6, 56) (7, 65)

(35, 26) (32, 34) (29, 31) (27, 28) (25, 17) (16, 14) (15, 24) (21, 22) (18, 19) (23, 68) (70,

69) (66, 67) (62, 64) (63, 72) (59, 61) (57, 58) (51, 60) (50, 52) (54, 55) (49, 48) (45, 71)

(20, 42) (30, 37) (39, 40) (38, 47) (44, 46) (41, 43) (33, 53)

Truncated icosahedron: (1, 14) (11, 13) (8, 10) (5, 7) (2, 4) (3, 16) (15, 28) (12, 26)

(9, 22) (6, 20) (19, 35) (32, 34) (17, 31) (18, 58) (56, 60) (29, 55) (30, 53) (50, 52) (27,

49) (25, 47) (45, 46) (44, 23) (24, 41) (38, 40) (21, 37) (36, 73) (33, 64) (59, 61) (57,

110) (54, 107) (51, 98) (48, 95) (43, 86) (42, 83) (39, 77) (71, 75) (70, 68) (65, 67) (66,

62) (63, 116) (115, 113) (111, 112) (108, 109) (106, 104) (101, 103) (100, 99) (96, 97)

(92, 94) (89, 91) (87, 88) (84, 85) (80, 82) (119, 79) (78, 118) (74, 76) (120, 122) (72,

164) (69, 158) (117, 155) (114, 149) (146, 105) (140, 102) (93, 137) (131, 90) (128, 81)

(163, 161) (159, 160) (156, 157) (152, 154) (150, 151) (147, 148) (143, 145) (141, 142)

(138, 139) (134, 136) (132, 133) (129, 130) (125, 127) (123, 124) (121, 165) (162, 166)

(153, 179) (144, 176) (135, 173) (126, 170) (167, 169) (171, 172) (174, 175) (177, 178)

(168, 180)

Truncated dodecahedron: (1, 29) (3, 32) (30, 31) (27, 44) (23, 25) (24, 43) (21, 41)

(18, 40) (17, 19) (11, 13) (15, 39) (12, 38) (5, 7) (9, 35) (6, 34) (2, 4) (26, 28) (22, 20)

(14, 16) (8, 10) (36, 62) (33, 46) (45, 107) (42, 92) (37, 77) (61, 59) (60, 66) (63, 64)

(47, 49) (51, 120) (48, 119) (108, 109) (111, 105) (104, 106) (90, 96) (93, 94) (89, 91)

(74, 76) (78, 79) (75, 81) (58, 56) (50, 52) (55, 53) (54, 122) (57, 123) (121, 136) (117,

118) (112, 110) (116, 113) (115, 135) (114, 134) (133, 149) (101, 103) (95, 97) (98, 100)

(102, 131) (99, 130) (132, 146) (86, 88) (80, 82) (83, 85) (87, 128) (84, 127) (129, 142)

(71, 73) (65, 67) (68, 70) (72, 126) (69, 125) (124, 139) (137, 154) (156, 153) (152, 138)

(151, 180) (179, 150) (148, 176) (177, 178) (174, 175) (173, 147) (170, 145) (171, 172)

(168, 169) (165, 166) (164, 144) (143, 167) (162, 163) (159, 160) (141, 158) (140, 161)

(155, 157)
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Truncated cuboctahedron: (1, 23) (24, 20) (21, 17) (18, 14) (15, 12) (10, 9) (7, 6)

(4, 3) (2, 25) (22, 29) (19, 32) (16, 35) (13, 38) (11, 41) (8, 44) (5, 46) (26, 28) (30, 55)

(56, 58) (31, 59) (33, 34) (36, 62) (63, 64) (65, 37) (39, 40) (42, 67) (68, 70) (43, 71) (45,

48) (47, 49) (50, 52) (27, 53) (54, 77) (51, 73) (76, 74) (78, 79) (75, 119) (57, 86) (60,

89) (88, 87) (85, 83) (90, 91) (61, 98) (66, 101) (100, 99) (95, 97) (102, 103) (72, 113)

(69, 110) (111, 112) (114, 115) (107, 109) (80, 82) (84, 128) (126, 127) (81, 125) (129,

130) (132, 133) (96, 134) (92, 94) (93, 131) (135, 136) (137, 105) (104, 106) (108, 140)

(138, 139) (141, 142) (117, 143) (123, 144) (120, 121) (116, 118) (122, 124)

Truncated icosidodecahedron: (1, 29) (26, 28) (23, 25) (20, 22) (17, 19) (15, 16)

(11, 14) (8, 10) (5, 7) (2, 4) (3, 31) (30, 59) (27, 56) (24, 52) (21, 50) (18, 47) (13, 44)

(12, 41) (9, 38) (6, 34) (33, 60) (58, 89) (88, 86) (85, 57) (53, 55) (83, 54) (80, 82) (79,

51) (48, 49) (46, 77) (75, 76) (45, 74) (42, 43) (40, 71) (68, 70) (39, 67) (35, 37) (36,

65) (64, 62) (61, 32) (90, 119) (87, 116) (84, 113) (81, 109) (78, 107) (73, 104) (72, 101)

(69, 98) (66, 95) (63, 91) (93, 121) (123, 179) (178, 176) (175, 174) (173, 120) (118, 117)

(115, 170) (169, 167) (166, 164) (163, 162) (161, 114) (112, 110) (111, 158) (155, 157)

(152, 154) (149, 151) (108, 148) (105, 106) (103, 146) (143, 145) (140, 142) (138, 139)

(102, 137) (99, 100) (97, 134) (131, 133) (128, 130) (125, 127) (96, 124) (92, 94) (122,

181) (180, 269) (177, 260) (257, 172) (171, 254) (168, 251) (165, 242) (160, 239) (159,

236) (156, 233) (153, 224) (150, 221) (147, 218) (144, 215) (141, 206) (136, 203) (135,

200) (132, 197) (129, 188) (126, 185) (184, 182) (183, 270) (268, 266) (265, 262) (264,

261) (259, 258) (256, 255) (252, 253) (248, 250) (247, 245) (244, 243) (241, 240) (237,

238) (234, 235) (230, 232) (227, 229) (226, 225) (222, 223) (219, 220) (216, 217) (214,

212) (209, 211) (207, 208) (204, 205) (202, 201) (199, 198) (196, 194) (191, 193) (189,

190) (186, 187) (267, 271) (263, 323) (249, 314) (246, 311) (231, 302) (228, 299) (290,

213) (210, 287) (195, 278) (192, 274) (276, 329) (328, 326) (325, 272) (273, 324) (322,

320) (319, 317) (316, 315) (313, 312) (308, 310) (307, 305) (304, 303) (300, 301) (296,

298) (293, 295) (291, 292) (288, 289) (284, 286) (281, 283) (279, 280) (275, 277) (330,

332) (327, 359) (321, 356) (353, 318) (350, 309) (347, 306) (344, 297) (294, 341) (285,

338) (282, 335) (333, 334) (331, 360) (358, 357) (355, 354) (351, 352) (348, 349) (345,

346) (342, 343) (339, 340) (337, 336)
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Cuboctahedron: (1, 10) (11, 14) (15, 8) (4, 5) (2, 21) (3, 17) (20, 6) (7, 31) (30, 16)

(27, 13) (22, 9) (12, 26) (25, 39) (28, 42) (43, 29) (32, 46) (47, 19) (18, 33) (24, 34) (23,

38) (35, 37) (40, 41) (44, 45) (36, 48)

Icosidodecahedron: (1, 9) (10, 17) (18, 26) (27, 34) (35, 4) (3, 37) (2, 5) (6, 12) (11,

13) (14, 20) (19, 21) (22, 25) (28, 29) (30, 33) (36, 40) (38, 41) (44, 79) (39, 78) (8, 45)

(7, 49) (46, 52) (16, 54) (55, 57) (15, 58) (24, 63) (64, 65) (23, 66) (32, 70) (31, 74) (71,

73) (75, 77) (80, 110) (76, 109) (42, 48) (47, 82) (81, 43) (50, 53) (56, 86) (51, 85) (60,

93) (59, 62) (61, 94) (67, 69) (72, 102) (101, 68) (89, 96) (95, 100) (90, 99) (98, 107)

(103, 108) (97, 104) (105, 112) (111, 116) (106, 115) (84, 113) (83, 117) (114, 120) (88,

118) (87, 92) (91, 119)

Rhombicuboctahedron: (1, 5) (6, 9) (10, 13) (4, 14) (2, 17) (3, 30) (20, 31) (8, 33)

(7, 38) (34, 37) (12, 54) (11, 59) (55, 58) (15, 70) (67, 69) (16, 66) (18, 36) (35, 48) (21,

47) (19, 24) (40, 41) (39, 53) (50, 56) (42, 49) (57, 64) (61, 79) (68, 80) (65, 60) (72, 76)

(28, 73) (25, 32) (29, 71) (22, 82) (27, 81) (23, 26) (44, 45) (46, 86) (43, 87) (51, 63)

(62, 91) (52, 90) (75, 77) (74, 95) (78, 94) (84, 96) (83, 85) (88, 89) (92, 93)

Rhombicosidodecahedron: (1, 19) (4, 5) (8, 12) (11, 16) (15, 20) (2, 21) (3, 28) (6,

29) (7, 36) (9, 40) (10, 44) (13, 47) (14, 52) (17, 56) (18, 237) (240, 22) (24, 25) (27, 30)

(32, 33) (35, 37) (39, 41) (43, 48) (46, 49) (51, 53) (55, 238) (54, 116) (57, 239) (23, 68)

(26, 72) (31, 80) (34, 84) (38, 92) (42, 96) (45, 104) (50, 108) (115, 58) (60, 61) (64, 65)

(67, 69) (71, 73) (76, 77) (79, 81) (83, 85) (88, 89) (91, 93) (95, 97) (100, 101) (103, 105)

(107, 109) (112, 113) (114, 117) (175, 118) (62, 124) (63, 128) (66, 132) (70, 131) (74,

136) (75, 140) (78, 144) (82, 143) (86, 148) (87, 152) (90, 156) (94, 155) (98, 160) (99,

164) (102, 168) (106, 167) (110, 172) (111, 176) (119, 121) (123, 125) (127, 129) (130,

133) (135, 137) (139, 141) (142, 145) (147, 149) (151, 153) (154, 157) (159, 161) (163,

165) (166, 169) (171, 173) (59, 120) (122, 184) (126, 188) (134, 192) (138, 196) (146,

200) (150, 204) (158, 208) (162, 212) (170, 213) (174, 177) (183, 185) (187, 189) (191,

193) (195, 197) (199, 201) (203, 205) (207, 209) (211, 214) (178, 216) (180, 181) (182,

224) (186, 223) (190, 228) (194, 227) (198, 232) (202, 231) (206, 236) (210, 235) (215,

218) (179, 217) (222, 225) (226, 229) (230, 233) (234, 219) (220, 221)
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Pseudorhombicuboctahedron: (1, 5) (6, 10) (11, 14) (4, 15) (2, 17) (3, 46) (20, 47)

(8, 21) (7, 26) (22, 25) (9, 30) (12, 35) (31, 34) (13, 38) (16, 43) (39, 42) (18, 24) (23,

53) (50, 56) (19, 49) (28, 58) (59, 61) (32, 62) (27, 29) (33, 65) (66, 70) (40, 71) (36, 37)

(44, 45) (48, 80) (76, 79) (41, 75) (52, 77) (51, 81) (84, 96) (78, 95) (55, 82) (83, 88)

(60, 85) (54, 57) (86, 64) (63, 68) (67, 91) (87, 90) (89, 93) (73, 94) (72, 74) (69, 92)

Snub cube: (1, 18) (13, 17) (8, 12) (2, 7) (5, 22) (4, 60) (3, 53) (21, 19) (20, 26) (16,

35) (34, 14) (40, 15) (45, 11) (9, 44) (10, 49) (6, 54) (52, 56) (59, 23) (25, 27) (30, 31)

(33, 36) (39, 41) (43, 50) (48, 55) (51, 73) (57, 72) (58, 67) (24, 61) (65, 28) (29, 97) (32,

93) (37, 92) (38, 87) (42, 84) (46, 83) (47, 78) (71, 68) (66, 62) (64, 98) (96, 94) (88,

91) (85, 86) (79, 82) (74, 77) (75, 108) (69, 107) (70, 103) (63, 102) (99, 101) (100, 119)

(118, 95) (89, 117) (90, 114) (81, 113) (80, 112) (76, 109) (104, 106) (105, 120) (115,

116) (110, 111)

Snub dodecahedron: (1, 7) (8, 12) (13, 16) (17, 21) (5, 22) (2, 37) (3, 32) (4, 27)

(6, 38) (10, 42) (9, 47) (11, 48) (15, 52) (14, 57) (20, 58) (19, 62) (18, 67) (25, 68) (24,

72) (26, 23) (28, 31) (33, 36) (39, 41) (43, 46) (49, 51) (53, 56) (59, 61) (63, 66) (69, 71)

(30, 73) (29, 76) (35, 87) (34, 92) (40, 93) (45, 102) (44, 107) (50, 108) (55, 117) (54,

122) (60, 123) (65, 132) (64, 137) (70, 138) (75, 147) (74, 80) (77, 81) (82, 86) (88, 91)

(94, 96) (97, 101) (103, 106) (109, 111) (112, 116) (118, 121) (124, 126) (127, 131) (133,

136) (139, 141) (142, 146) (79, 148) (149, 182) (78, 183) (85, 184) (84, 187) (83, 192)

(90, 193) (89, 197) (95, 198) (100, 199) (99, 202) (98, 206) (105, 207) (104, 212) (110,

213) (115, 214) (114, 217) (113, 223) (120, 224) (119, 152) (125, 153) (130, 154) (129,

157) (128, 162) (135, 163) (134, 167) (140, 168) (145, 169) (144, 172) (143, 177) (150,

178) (200, 201) (203, 210) (208, 211) (215, 216) (218, 222) (225, 151) (155, 156) (158,

161) (164, 166) (170, 171) (173, 176) (179, 181) (185, 186) (188, 191) (194, 196) (195,

258) (205, 262) (204, 267) (209, 268) (220, 272) (219, 230) (221, 226) (160, 232) (159,

237) (165, 238) (175, 242) (174, 247) (180, 248) (190, 252) (189, 257) (259, 261) (263,

266) (269, 271) (273, 229) (227, 231) (233, 236) (239, 241) (243, 246) (249, 251) (253,

256) (260, 293) (265, 294) (264, 297) (270, 298) (275, 299) (274, 280) (228, 276) (235,

277) (234, 282) (240, 283) (284, 245) (287, 244) (288, 250) (289, 255) (292, 254) (295,

296) (300, 279) (278, 281) (285, 286) (290, 291)
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B Algorithm for Computing Generators for Hecke

Subgroups

We can find the generators for a representative of all the conjugacy classes of subgroups of

interest using GAP [6,33]. First, we use the permutation data σ0, σ1 obtained from each

of the Schreier coset graphs (in turn obtained from each of the dessins) to find the group

homomorphism by images between the relevant Hecke group and a representative of the

conjugacy class of subgroups of interest. We then use this to define the representative in

question. Finally, we use the GAP command IsomorphismFpGroup(G), which returns an

isomorphism from the given representative to a finitely presented group isomorphic to

that representative. This function first chooses a set of generators of the representative

and then computes a presentation in terms of these generators.

To give an example, consider the clean dessin for the octahedron. We can find a set

of generators as 2× 2 matrices for a representative of the associated class of subgroups

by implementing the following code in GAP:

gap> f:=FreeGroup(‘‘x’’,‘‘y’’);

<free group on the generators [ x, y ]>

gap> H4:=f/[f.1^2,f.2^4];

<fp group on the generators [ x, y ]>

gap>hom:=GroupHomomorphismByImages(H4,Group(

(1,5)(6,11)(4,12)(2,13)(3,23)(8,14)(7,18)(10,19)(9,22)(16,24)(15,17)(20,21),

(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)),

GeneratorsOfGroup(H4),

[(1,5)(6,11)(4,12)(2,13)(3,23)(8,14)(7,18)(10,19)(9,22)(16,24)(15,17)(20,21),

(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24))]);

[ x, y ] ->

[ (1,5)(2,13)(3,23)(4,12)(6,11)(7,18)(8,14)(9,22)(10,19)(15,17)(16,24)(20,21),

(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) ]

gap> octahedron group:=PreImage(hom,Stabilizer(Image(hom),1));

Group(<fp, no generators known>)

gap> iso:=IsomorphismFpGroup(octahedron group);

[ <[ [ 1, 1 ] ]|y*x*y*x^-1*y*x^-1>,

<[ [ 2, 1 ] ]|y^-1*x*y^-1*x^-1*y^-1*x^-1>,

<[ [ 3, 1 ] ]|y^2*x*y*x^-1*y*x^-1*y^ -1>,

<[ [ 4, 1 ] ]|y^-1*x*y*x*y*x^-1*y^-2>,

<[ [ 5, 1 ] ]|x*y^2*x*y*x^-1*y*x^-1*y^-1*x^-1>,
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<[ [ 6, 1 ] ]|x*y^-1*x*y*x*y*x^-1*y^-2*x^-1>,

<[ [ 7, 1 ] ]|y*x*y^-1*x*y*x*y^-1*x^-1*y*x^-1*y^-1*x^-1> ]

-> [ F1, F2, F3, F4, F5, F6, F7 ]

We define the relevant Hecke group (here H4) in the third line. Then, the only input

in each case is the permutation data σ0, σ1. Once the output has been obtained, we see

the generators (here seven: [F1, F2, F3, F4, F5, F6, F7]) in the final line, as functions of

the x and y for the Hecke group in question. Now, returning to the explicit matrices for

these x and y presented in section (2.2), the only thing left to do is to multiply together

the matrices and their inverses as indicated. This will produce the generators for each

representative, as required.
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