50 research outputs found

    The generation of resonant turbulence for a premixed burner

    Get PDF
    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central blocking grid of a low swirl burner. The turbulence originating from this grid is studied by hot wire anemometry to see if there is a frequency for maximal response. Although no resonant enhancement of the turbulent kinetic energy or the dissipation rate is observed, the results for the two different sets of disks show that significant turbulent fluctuations are introduced mainly in the energy containing range and partially in the inertial sub range. These fluctuations represent up to 25% of the total turbulent energy and are not caused by pulsations of the mean flow

    Application of Fractal Grids in Industrial Low-Swirl combustion

    Get PDF
    Fractal-grid-generated turbulence is a successful technique to significantly increase the reaction rate in the center of a low-swirl flame. Previous results (Verbeek et al. Combust. Flame 162(1), 129–143, 2015) are promising, but the experiments are only performed using natural gas at a single equivalence ratio and flow rate. In industry, the need arises to adapt gas turbines to a wider range of fuels, such as biogas and syngas. To simulate these other fuels, natural gas is enriched with up to 30 % hydrogen (molar based). By means of planar OH-LIF, the turbulent flame speed is assessed. It is shown that the beneficial effect of fractal-grid-generated turbulence remains upon hydrogen enrichment. The fractal grids enhance the combustion in an energy efficient way, irrespective of the hydrogen fraction. Moreover, the characteristic linear relation of the normalized local consumption speed versus the normalized rms velocity holds for the investigated range, with an increasing coefficient upon hydrogen enrichment. For industry, a wide operability range is essential to operate at part load, therefore the lean stability limit is investigated, as well. It is shown that fractal grids increase the lean stability limit, i.e., the adiabatic flame temperature at which blow off occurs, by 50 K, compared to a standard grid. Increasing the bulk flow significantly increases the lean stability limit and the difference between the two investigated grid types increases upon hydrogen enrichment. Hydrogen addition results in a decrease in the lean stability limit, regardless of the grid. A positive correlation was found between the adiabatic flame temperature at blow-off and the rms velocity at the flame brush. The outcome of the presented study provides, despite a slightly increased lean stability limit, a promising prospect for the application of fractal grids in industrial low-swirl combustion

    CO carbonylation and first evaluation as a P-gp tracer in rats

    Get PDF
    BACKGROUND: At present, several positron emission tomography (PET) tracers are in use for imaging P-glycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[(11)C]verapamil display low brain concentrations with a distribution volume of around 1. [(11)C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [(11)C]phenytoin and to characterize its properties as a P-gp tracer. METHODS: [(11)C]CO was used to synthesize [(11)C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [(11)C]phenytoin were studied in rats. Effects of P-gp function on [(11)C]phenytoin uptake were assessed using predosing with tariquidar. RESULTS: [(11)C]phenytoin was synthesized via [(11)C]CO in an overall decay-corrected yield of 22 ± 4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [(11)C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [(11)C]phenytoin. CONCLUSIONS: Using [(11)C]CO, the radiosynthesis of [(11)C]phenytoin could be improved. [(11)C]phenytoin appeared to be a rather weak P-gp substrate

    Strengthening the evidence-base of integrated care for people with multi-morbidity in Europe using Multi-Criteria Decision Analysis (MCDA).

    Get PDF
    Background: Evaluation of integrated care programmes for individuals with multi-morbidity requires a broader evaluation framework and a broader definition of added value than is common in cost-utility analysis. This is possible through the use of Multi-Criteria Decision Analysis (MCDA). Methods and results: This paper presents the seven steps of an MCDA to evaluate 17 different integrated care programmes for individuals with multi-morbidity in 8 European countries participating in the 4-year, EU-funded SELFIE project. In step one, qualitative research was undertaken to better understand the decision-context of these programmes. The programmes faced decisions related to their sustainability in terms of reimbursement, continuation, extension, and/or wider implementation. In step two, a uniform set of decision criteria was defined in terms of outcomes measured across the 17 programmes: physical functioning, psychological well-being, social relationships and participation, enjoyment of life, resilience, person-centeredness, continuity of care, and total health and social care costs. These were supplemented by programme-type specific outcomes. Step three presents the quasi-experimental studies designed to measure the performance of the programmes on the decision criteria. Step four gives details of the methods (Discrete Choice Experiment, Swing Weighting) to determine the relative importance of the decision criteria among five stakeholder groups per country. An example in step five illustrates the value-based method of MCDA by which the performance of the programmes on each decision criterion is combined with the weight of the respective criterion to derive an overall value score. Step six describes how we deal with uncertainty and introduces the Conditional Multi-Attribute Acceptability Curve. Step seven addresses the interpretation of results in stakeholder workshops. Discussion: By discussing our solutions to the challenges involved in creating a uniform MCDA approach for the evaluation of different programmes, this paper provides guidance to future evaluations and stimulates debate on how to evaluate integrated care for multi-morbidity

    Identification of Srp9 as a febrile seizure susceptibility gene

    Get PDF
    Objective: Febrile seizures (FS) are the most common seizure type in young children. Complex FS are a risk factor for mesial temporal lobe epilepsy (mTLE). To identify new FS susceptibility genes we used a forward genetic strategy in mice and subsequently analyzed candidate genes in humans. Methods: We mapped a quantitative trait locus (QTL1) for hyperthermia-induced FS on mouse chromosome 1, containing the signal recognition particle 9 (Srp9) gene. Effects of differential Srp9 expression were assessed in vivo and in vitro. Hippocampal SRP9 expression and genetic association were analyzed in FS and mTLE patients. Results: Srp9 was differentially expressed between parental strains C57BL/6J and A/J. Chromosome substitution strain 1 (CSS1) mice exhibited lower FS susceptibility and Srp9 expression than C57BL/6J mice. In vivo knockdown of brain Srp9 reduced FS susceptibility. Mice with reduced Srp9 expression and FS susceptibility, exhibited reduced hippocampal AMPA and NMDA currents. Downregulation of neuronal Srp9 reduced surface expression of AMPA receptor subunit GluA1. mTLE patients with antecedent FS had higher SRP9 expression than patients without. SRP9 promoter SNP rs12403575(G/A) was genetically associated with FS and mTLE. Interpretation: Our findings identify SRP9 as a novel FS susceptibility gene and indicate that SRP9 conveys its effects through endoplasmic reticulum (ER)-dependent synthesis and trafficking of membrane proteins, such as glutamate receptors. Discovery of this new FS gene and mechanism may provide new leads for early diagnosis and treatment of children with complex FS at risk for mTLE

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe

    Recurrent intrascleral cyst after strabismus surgery

    Get PDF
    Contains fulltext : 22872___.PDF (publisher's version ) (Open Access

    Optimization of combustion in gas turbines by applying resonant turbulence

    Get PDF
    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To answer that question an active grid with periodically opening and closing holes is constructed and placed upstream of a low swirl burner geometry. The presence of this grid introduces large scale turbulent fluctuations to the flow with frequencies related to the driving frequency of the active grid. It is investigated in cold flow condition what the optimum frequency is to enhance the turbulence and also in actual burning situation it is tested what the effect of the modified turbulence is on the flame characteristics. From first measurements it is shown that flame size can be reduced 20% and that the stability is increased marginally

    Process discovery using localized events

    No full text
    Process mining techniques aim to analyze and improve conformance and performance of processes using event data. Process discovery is the most prominent process-mining task: A process model is derived based on an event log. The process model should be able to capture causalities, choices, concurrency, and loops. Process discovery is very challenging because of trade-offs between fitness, simplicity, precision, and generalization. Note that event logs typically only hold example behavior and cannot be assumed to be complete (to avoid overfitting). Dozens of process discovery techniques have been proposed. These use a wide range of approaches, e.g., language- or state-based regions, genetic mining, heuristics, expectation maximization, iterative log-splitting, etc. When models or logs become too large for analysis, the event log may be automatically decomposed or traces may be clustered before discovery. Clustering and decomposition are done automatically, i.e., no additional information is used. This paper proposes a different approach where a localized event log is assumed. Events are localized by assigning a non-empty set of regions to each event. It is assumed that regions can only interact through shared events. Consider for example the mining of software systems. The events recorded typically explicitly refer to parts of the system (components, services, etc.). Currently, such information is ignored during discovery. However, references to system parts may be used to localize events. Also in other application domains, it is possible to localize events, e.g., communication events in an organization may refer to multiple departments (that may be seen as regions). This paper proposes a generic process discovery approach based on localized event logs. The approach has been implemented in ProM and experimental results show that location information indeed helps to improve the quality of the discovered models
    corecore