24 research outputs found

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Sediment properties as important predictors of carbon storage in zostera marina meadows: a comparison of four European areas

    Get PDF
    Seagrass ecosystems are important natural carbon sinks but their efficiency varies greatly depending on species composition and environmental conditions. What causes this variation is not fully known and could have important implications for management and protection of the seagrass habitat to continue to act as a natural carbon sink. Here, we assessed sedimentary organic carbon in Zostera marina meadows (and adjacent unvegetated sediment) in four distinct areas of Europe (Gullmar Fjord on the Swedish Skagerrak coast, Asko in the Baltic Sea, Sozopol in the Black Sea and Ria Formosa in southern Portugal) down to similar to 35 cm depth. We also tested how sedimentary organic carbon in Z. marina meadows relates to different sediment characteristics, a range of seagrass-associated variables and water depth. The seagrass carbon storage varied greatly among areas, with an average organic carbon content ranging from 2.79 +/- 0.50% in the Gullmar Fjord to 0.17 +/- 0.02% in the area of Sozopol. We found that a high proportion of fine grain size, high porosity and low density of the sediment is strongly related to high carbon content in Z. marina sediment. We suggest that sediment properties should be included as an important factor when evaluating high priority areas in management of Z. marina generated carbon sinks

    Distribution and abundance of phytobenthic communities: Implications for connectivity and ecosystem functioning in a Black Sea Marine Protected Area

    Get PDF
    Embargo until 14 November 2019The distribution and abundance of macroalgal communities in a Marine Protected Area (MPA) along the Bulgarian Black Sea coast were mapped and quantified, with particular focus on the previously unstudied P. crispa lower-infralittoral communities on Ostrea edulis biogenic reefs. Data from high resolution geophysical substrate mapping were combined with benthic community observations from georeferenced benthic photographic surveys and sampling. Multivariate analysis identified four distinct assemblages of lower-infralittoral macroalgal communities at depths between 10 and 17 m, dominated by Phyllophora crispa, Apoglossum ruscifoluim, Zanardinia typus and Gelidium spp. Maxent software analysis showed distinct preferences of the identified communities to areas with specific ranges of depth, inclination and curvature, with P. crispa more frequently occurring on vertical oyster biogenic reef structures. By combining production rates from literature, biomass measurements and the produced habitat maps, the highest proportion of primary production and DOC release was shown for the upper infralittoral Cystoseira barbata and Cystoseira bosphorica, followed by the production of the lower-infralittoral macroalgae. The observed distribution of P. crispa within the studied MPA was related to the network of Natura 2000 maritime MPAs along the Bulgarian Black Sea coast, which indicated that the connectivity of the populations of the species within the established network is insufficient within this cell of ecosystem functioning.acceptedVersio

    Current distribution of Zostera seagrass meadows along the Bulgarian Black Sea coast (SW Black Sea, Bulgaria) (2010-2020)

    No full text
    The current distribution of Zostera spp. seagrass meadows along the Bulgarian Black Sea coast was studied. We used a combination of historical and recent observations of the habitat along the studied coastline. Remote sensing data (satellite images, sonar side-scans) was groundtruthed with georeferenced drop camera observations, scuba diving sampling and georeferenced scuba diving photo and video transects.Тhe total area of the habitat type ‘MB548 - Black Sea seagrass meadows on lower infralittoral sands’ (EUNIS habitat type list 2019) in the study area is 916.9 ha, of which only 17.9 ha are in man-made sheltered environments (harbours). All seagrass meadows identified in 1978-79 were also located during the current survey, despite the increased eutrophication pressure and overall degradation of benthic habitats in the W Black Sea during the 1980s and early 1990s

    Benthic habitat mapping of Plazh Gradina – Zlatna ribka (Black Sea) and Karpathos and Saria Islands (Mediterranean Sea)

    No full text
    Habitat mapping is nеcessary for the efficient conservation and protection of marine ecosystems. In addition, it is a requirement for EU Member States as stated in the European Union (EU) Habitats Directive (92/43/EEC), as well as necessary for the achievement and maintenance of 'good environmental status (GES)' of benthic marine habitats in the framework of the EU Marine Strategy Framework Directive (2008/56/EC).This study provides baseline information on the marine benthic habitats of Sozopol Bay (Black Sea) and Karpathos and Saria islands (Mediterranean Sea). These two Natura 2000 sites were selected as study sites of the RECONNECT project, which aimed at creating a transnational cooperative network to confront the environmental threats of ecosystems with a high natural and cultural interest, by the establishment of common practices and a joint regional strategy. The specific objective was to map the marine habitats using a defined a priori classification (EUNIS), with the ultimate purpose of supporting government marine spatial planning, management and decision-making processes through the development of a Decision Support System

    Two-Year Monitoring of Water Samples from Dam of Iskar and the Black Sea, Bulgaria, by Molecular Analysis: Focus on <i>Mycobacterium</i> spp

    Get PDF
    The coast of the Bulgarian Black Sea is a popular summer holiday destination. The Dam of Iskar is the largest artificial dam in Bulgaria, with a capacity of 675 million m3. It is the main source of tap water for the capital Sofia and for irrigating the surrounding valley. There is a close relationship between the quality of aquatic ecosystems and human health as many infections are waterborne. Rapid molecular methods for the analysis of highly pathogenic bacteria have been developed for monitoring quality. Mycobacterial species can be isolated from waste, surface, recreational, ground and tap waters and human pathogenicity of nontuberculose mycobacteria (NTM) is well recognized. The objective of our study was to perform molecular analysis for key-pathogens, with a focus on mycobacteria, in water samples collected from the Black Sea and the Dam of Iskar. In a two year period, 38 water samples were collected—24 from the Dam of Iskar and 14 from the Black Sea coastal zone. Fifty liter water samples were concentrated by ultrafiltration. Molecular analysis for 15 pathogens, including all species of genus Mycobacterium was performed. Our results showed presence of Vibrio spp. in the Black Sea. Rotavirus A was also identified in four samples from the Dam of Iskar. Toxigenic Escherichia coli was present in both locations, based on markers for stx1 and stx2 genes. No detectable amounts of Cryptosporidium were detected in either location using immunomagnetic separation and fluorescence microscopy. Furthermore, mass spectrometry analyses did not detect key cyanobacterial toxins. On the basis of the results obtained we can conclude that for the period 2012–2014 no Mycobacterium species were present in the water samples. During the study period no cases of waterborne infections were reported

    Map showing the study areas.

    No full text
    <p>The four study areas include the Gullmar Fjord (Skagerrak, Sweden) (1), Ria Formosa (Gulf of Cádiz, Portugal) (2), Askö (Baltic Sea, Sweden) (3) and Sozopol (Black Sea, Bulgaria) (4). The map is adapted from Esri ArcGIS online basemaps.</p

    Semi-log plots (log<sub>10</sub>[x+1]) showing the relationship between sedimentary % C<sub>org</sub> and grain size.

    No full text
    <p>The % C<sub>org</sub> is presented with a log scale as it gave the best fit of the models. Grain size is shown as mean grain size (ɸ) and sediment particles < 0.074 mm (%) for <i>Z</i>. <i>marina</i> meadows (a and b) and unvegetated areas (c and d). The % C<sub>org</sub> was positively linked to both sediment particles < 0.074 mm (%) (R<sup>2</sup> = 0.91, <i>P</i> < 0.001) and mean grain size (ɸ) (R<sup>2</sup> = 0.74, <i>P</i> < 0.001) for <i>Z</i>. <i>marina</i> meadows but for unvegetated areas only sediment particles < 0.074 mm (%) showed such relationship with % C<sub>org</sub> (R<sup>2</sup> = 0.42, <i>P</i> < 0.001).</p
    corecore