21 research outputs found

    Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli

    Get PDF
    Iron is an essential trace-element for most organisms. However, because high concentration of free intracellular iron is cytotoxic, cells have developed complex regulatory networks that keep free intracellular iron concentration at optimal range, allowing the incorporation of the metal into iron-using enzymes and minimizing damage to the cell. We built a mathematical model of the network that controls iron uptake and usage in the bacterium Escherichia coli to explore the dynamics of iron flow. We simulate the effect of sudden decrease or increase in the extracellular iron level on intracellular iron distribution. Based on the results of simulations we discuss the possible roles of the small RNA RyhB and the Fe-S cluster assembly systems in the optimal redistribution of iron flows. We suggest that Fe-S cluster assembly is crucial to prevent the accumulation of toxic levels of free intracellular iron when the environment suddenly becomes iron rich.Comment: 8 pages, 4 figure

    Ribonucleotide reductases of Salmonella Typhimurium : transcriptional regulation and differential role in pathogenesis

    Get PDF
    Ribonucleotide reductases (RNRs) are essential enzymes that carry out the de novo synthesis of deoxyribonucleotides by reducing ribonucleotides. There are three different classes of RNRs (I, II and III), all having different oxygen dependency and biochemical characteristics. Salmonella enterica serovar Typhimurium (S. Typhimurium) harbors class Ia, class Ib and class III RNRs in its genome. We have studied the transcriptional regulation of these three RNR classes in S. Typhimurium as well as their differential function during infection of macrophage and epithelial cells. Deletion of both NrdR and Fur, two main transcriptional regulators, indicates that Fur specifically represses the class Ib enzyme and that NrdR acts as a global repressor of all three classes. A Fur recognition sequence within the nrdHIEF promoter has also been described and confirmed by electrophoretic mobility shift assays (EMSA). In order to elucidate the role of each RNR class during infection, S. Typhimurium single and double RNR mutants (as well as Fur and NrdR mutants) were used in infection assays with macrophage and epithelial cell lines. Our results indicate class Ia to be mainly responsible for deoxyribonucleotide production during invasion and proliferation inside macrophages and epithelial cells. Neither class Ib nor class III seem to be essential for growth under these conditions. However, class Ib is able to maintain certain growth in an nrdAB mutant during the first hours of macrophage infection. Our results suggest that, during the early stages of macrophage infection, class Ib may contribute to deoxyribonucleotide synthesis by means of both an NrdR and a Fur-dependent derepression of nrdHIEF due to hydrogen peroxide production and DNA damage associated with the oxidative burst, thus helping to overcome the host defenses

    Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study

    Get PDF
    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe[superscript II] as a Lewis acid under normal growth conditions but which switch to Mn[superscript II] under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe[superscript II] and Mn[superscript II], the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, “discrimination” between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.National Institutes of Health (U.S.) (Grant GM81393

    Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats

    No full text
    Heme oxygenases (HOs) catalyze the oxidation of heme to biliverdin, carbon monoxide (CO), and free iron. Iron acquisition is critical for invading microorganisms to enable survival and growth. Here we report the crystal structure of ChuS, which displays a previously uncharacterized fold and is unique compared with other characterized HOs. Despite only 19% sequence identity between the N- and C-terminal halves, these segments of ChuS represent a structural duplication, with a root-mean-square deviation of 2.1 Å between the two repeats. ChuS is capable of using ascorbic acid or cytochrome P450 reductase-NADPH as electron sources for heme oxygenation. CO detection confirmed that ChuS is a HO, and we have identified it in pathogenic Escherichia coli O157:H7. Based on sequence analysis, this HO is present in many bacteria, although not in the E. coli K-12 strain. The N- and C-terminal halves of ChuS are each a functional HO
    corecore