176 research outputs found

    Hfq affects mRNA levels independently of degradation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bacterial Lsm protein, Hfq, is an RNA chaperone involved in many reactions related to RNA metabolism, such as replication and stability, control of small RNA activity and polyadenylation. Despite this wide spectrum of known functions, the global role of Hfq is almost certainly undervalued; its capacity to bind DNA and to interact with many other proteins are only now beginning to be taken into account.</p> <p>Results</p> <p>The role of Hfq in the maturation and degradation of the <it>rpsO </it>mRNA of <it>E. coli </it>was investigated <it>in vivo</it>. The data revealed a decrease in <it>rpsO </it>mRNA abundance concomitant to an increase in its stability when Hfq is absent. This indicates that the change in mRNA levels in <it>hfq </it>mutants does not result from its modification of RNA stability. Moreover, a series of independent experiments have revealed that the decrease in mRNA level is not a consequence of a reduction of translation efficiency and that Hfq is not directly implicated in translational control of <it>rpsO </it>expression. Reduced steady-state mRNA levels in the absence of Hfq were also shown for <it>rpsT, rpsB </it>and <it>rpsB-tsf</it>, but not for <it>lpp, pnp </it>or tRNA transcripts. The abundance of chimeric transcripts <it>rpsO-lacZ </it>and <it>rpsB-lacZ</it>, whose expression was driven by <it>rpsO </it>and <it>rpsB </it>promoters, respectively, was also lower in the <it>hfq </it>null-mutants, while the β-galactosidase yield remained about the same as in the parent wild-type strain.</p> <p>Conclusions</p> <p>The data obtained suggest that alteration of <it>rpsO, rpsT </it>and <it>rpsB-tsf </it>transcript levels observed under conditions of Hfq deficiency is not caused by the post-transcriptional events, such as mRNA destabilization or changes in translation control, and may rather result from changes in transcriptional activity. So far, how Hfq affects transcription remains unclear. We propose that one of the likely mechanisms of Hfq-mediated modulation of transcription might operate early in the elongation step, when interaction of Hfq with a nascent transcript would help to overcome transcription pauses and to prevent preliminary transcript release.</p

    Landscape of RNA polyadenylation in E-coli

    Get PDF
    Polyadenylation is thought to be involved in the degradation and quality control of bacterial RNAs but relatively few examples have been investigated. We used a combination of 5 '-tagRACE and RNA-seq to analyze the total RNA content from a wild-type strain and from a poly(A) polymerase deleted Mutant. A total of 178 transcripts were either up- or down-regulated in the mutant when compared to the wild-type strain. Poly(A) polymerase up-regulates the expression of all genes related to the FliA regulon and several previously unknown transcripts, including numerous transporters. Notable down-regulation of genes in the expression of antigen 43 and components of the type 1 fimbriae was detected. The major consequence of the absence of poly(A) polymerase was the accumulation of numerous sRNAs, antisense transcripts, REP sequences and RNA fragments resulting from the processing of entire transcripts. A new algorithm to analyze the position and composition of post-transcriptional modifications based on the sequence of unencoded 3 '-ends, was developed to identify polyadenylated molecules. Overall our results shed new light on the broad spectrum of action of polyadenylation on gene expression and demonstrate the importance of poly(A) dependent degradation to remove structured RNA fragments.Peer reviewe

    Polyadenylation of a functional mRNA controls gene expression in Escherichia coli

    Get PDF
    Although usually implicated in the stabilization of mRNAs in eukaryotes, polyadenylation was initially shown to destabilize RNA in bacteria. All the data are consistent with polyadenylation being part of a quality control process targeting folded RNA fragments and non-functional RNA molecules to degradation. We report here an example in Escherichia coli, where polyadenylation directly controls the level of expression of a gene by modulating the stability of a functional transcript. Inactivation of poly(A)polymerase I causes overexpression of glucosamine–6-phosphate synthase (GlmS) and both the accumulation and stabilization of the glmS transcript. Moreover, we show that the glmS mRNA results from the processing of the glmU-glmS cotranscript by RNase E. Interestingly, the glmU-glmS cotranscript and the mRNA fragment encoding GlmU only slightly accumulated in the absence of poly(A)polymerase, suggesting that the endonucleolytically generated glmS mRNA harbouring a 5′ monophosphate and a 3′ stable hairpin is highly susceptible to poly(A)-dependent degradation

    The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells

    Get PDF
    Polyadenylation of RNAs by poly(A) polymerase I (PAP I) in Escherichia coli plays a significant role in mRNA decay and general RNA quality control. However, many important features of this system, including the prevalence of polyadenylated mRNAs in the bacterium, are still poorly understood. By comparing the transcriptomes of wild-type and pcnB deletion strains using macroarray analysis, we demonstrate that >90% of E.coli open reading frames (ORFs) transcribed during exponential growth undergo some degree of polyadenylation by PAP I, either as full-length transcripts or decay intermediates. Detailed analysis of over 240 transcripts suggests that Rho-independent transcription terminators serve as polyadenylation signals. Conversely, mRNAs terminated in a Rho-dependent fashion are probably not substrates for PAP I, but can be modified by the addition of long polynucleotide tails through the biosynthetic activity of polynucleotide phosphorylase (PNPase). Furthermore, real-time PCR analysis indicates that the extent of polyadenylation of individual full-length transcripts such as lpp and ompA varies significantly in wild-type cells. The data presented here demonstrates that polyadenylation in E.coli occurs much more frequently than previously envisioned

    Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA

    Get PDF
    Hfq protein is vital for the function of many non-coding small (s)RNAs in bacteria but the mechanism by which Hfq facilitates the function of sRNA is still debated. We developed a fluorescence resonance energy transfer assay to probe how Hfq modulates the interaction between a sRNA, DsrA, and its regulatory target mRNA, rpoS. The relevant RNA fragments were labelled so that changes in intra- and intermolecular RNA structures can be monitored in real time. Our data show that Hfq promotes the strand exchange reaction in which the internal structure of rpoS is replaced by pairing with DsrA such that the Shine-Dalgarno sequence of the mRNA becomes exposed. Hfq appears to carry out strand exchange by inducing rapid association of DsrA and a premelted rpoS and by aiding in the slow disruption of the rpoS secondary structure. Unexpectedly, Hfq also disrupts a preformed complex between rpoS and DsrA. While it may not be a frequent event in vivo, this melting activity may have implications in the reversal of sRNA-based regulation. Overall, our data suggests that Hfq not only promotes strand exchange by binding rapidly to both DsrA and rpoS but also possesses RNA chaperoning properties that facilitates dynamic RNA–RNA interactions

    Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq

    Get PDF
    Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)3A that are recognized by BsHfq and crystal structures of the BsHfq–(AG)3A complex at 2.2 Å resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)3A. In particular, R32 appears to interact with G bases in (AG)3A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and protein–RNA interaction patterns engaged in the R32 residues of BsHfq–(AG)3A differ from those of EcHfq–poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA

    S1 ribosomal protein and the interplay between translation and mRNA decay

    Get PDF
    S1 is an ‘atypical’ ribosomal protein weakly associated with the 30S subunit that has been implicated in translation, transcription and control of RNA stability. S1 is thought to participate in translation initiation complex formation by assisting 30S positioning in the translation initiation region, but little is known about its role in other RNA transactions. In this work, we have analysed in vivo the effects of different intracellular S1 concentrations, from depletion to overexpression, on translation, decay and intracellular distribution of leadered and leaderless messenger RNAs (mRNAs). We show that the cspE mRNA, like the rpsO transcript, may be cleaved by RNase E at multiple sites, whereas the leaderless cspE transcript may also be degraded via an alternative pathway by an unknown endonuclease. Upon S1 overexpression, RNase E-dependent decay of both cspE and rpsO mRNAs is suppressed and these transcripts are stabilized, whereas cleavage of leaderless cspE mRNA by the unidentified endonuclease is not affected. Overall, our data suggest that ribosome-unbound S1 may inhibit translation and that part of the Escherichia coli ribosomes may actually lack S1

    Intragenic suppressors of temperature-sensitive rne mutations lead to the dissociation of RNase E activity on mRNA and tRNA substrates in Escherichia coli

    Get PDF
    RNase E of Escherichia coli is an essential endoribonuclease that is involved in many aspects of RNA metabolism. Point mutations in the S1 RNA-binding domain of RNase E (rne-1 and rne-3071) lead to temperature-sensitive growth along with defects in 5S rRNA processing, mRNA decay and tRNA maturation. However, it is not clear whether RNase E acts similarly on all kinds of RNA substrates. Here we report the isolation and characterization of three independent intragenic second-site suppressors of the rne-1 and rne-3071 alleles that demonstrate for the first time the dissociation of the in vivo activity of RNase E on mRNA versus tRNA and rRNA substrates. Specifically, tRNA maturation and 9S rRNA processing were restored to wild-type levels in each of the three suppressor mutants (rne-1/172, rne-1/186 and rne-1/187), while mRNA decay and autoregulation of RNase E protein levels remained as defective as in the rne-1 single mutant. Each single amino acid substitution (Gly→Ala at amino acid 172; Phe → Cys at amino acid 186 and Arg → Leu at amino acid 187) mapped within the 5′ sensor region of the RNase E protein. Molecular models of RNase E suggest how suppression may occur

    Characterization of the role of ribonucleases in Salmonella small RNA decay

    Get PDF
    In pathogenic bacteria, a large number of sRNAs coordinate adaptation to stress and expression of virulence genes. To better understand the turnover of regulatory sRNAs in the model pathogen, Salmonella typhimurium, we have constructed mutants for several ribonucleases (RNase E, RNase G, RNase III, PNPase) and Poly(A) Polymerase I. The expression profiles of four sRNAs conserved among many enterobacteria, CsrB, CsrC, MicA and SraL, were analysed and the processing and stability of these sRNAs was studied in the constructed strains. The degradosome was a common feature involved in the turnover of these four sRNAs. PAPI-mediated polyadenylation was the major factor governing SraL degradation. RNase III was revealed to strongly affect MicA decay. PNPase was shown to be important in the decay of these four sRNAs. The stability of CsrB and CsrC seemed to be independent of the RNA chaperone, Hfq, whereas the decay of SraL and MicA was Hfq-dependent. Taken together, the results of this study provide initial insight into the mechanisms of sRNA decay in Salmonella, and indicate specific contributions of the RNA decay machinery components to the turnover of individual sRNAs
    corecore