1,043 research outputs found

    DNA damage associated with ultrastructural alterations in rat myocardium after loud noise exposure.

    Get PDF
    Noise exposure causes changes at different levels in human organs, particularly the cardiovascular system, where it is responsible for increasing heart rate, peripheral vascular resistance, and blood pressure. In this study, we evaluated the effect of noise exposure on DNA integrity and ultrastructure of rat cardiomyocytes. The exposure to loud noise (100 dBA) for 12 hr caused a significant increase of DNA damage, accompanied by swelling of mitochondrial membranes, dilution of the matrix, and cristolysis. These alterations were concomitant with increased in situ noradrenaline levels and utilization. Genetic and ultrastructural alterations did not decrease 24 hr after the cessation of the stimulus. An elevated oxyradical generation, possibly related to altered sympathetic innervation, is hypothesized as responsible for the induction and persistence of noise-induced cellular damage

    Economic Impact of Cystic Echinococcosis in Peru

    Get PDF
    Cystic echinococcosis (CE), caused by infection with the larval stage of the cestode Echinococcus granulosus, constitutes an important public health problem in Peru. Despite its high prevalence in endemic communities no studies have attempted to estimate the economic impact of CE in Peruvian society. We used official and published sources of epidemiological and economic information to estimate direct and indirect costs associated with livestock production losses and human disease. We also used disability adjusted life years (DALYs) which is an overall measure of disease burden, expressed as number of years lost due to ill-health, disability or early death due to CE. We found that the total estimated cost of human CE in Peru was U.S.2,420,348peryear.TotalestimatedlivestockassociatedcostsduetoCErangedfromU.S.2,420,348 per year. Total estimated livestock-associated costs due to CE ranged from U.S.196,681 to U.S.$3,846,754. An estimated 1,139 DALYs were also lost due to surgical cases of CE which is comparable to DALY losses from Amebiasis or Malaria in Peru. This conservative assessment found significant economic losses caused by this CE in Peruvian society. The findings of this study are important as these data can serve to prioritize those areas that may need to be targeted in a control program

    Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers

    Get PDF
    Background The timing and mechanisms of asthma inception remain imprecisely defined. Although epigenetic mechanisms likely contribute to asthma pathogenesis, little is known about their role in asthma inception. Objective We sought to assess whether the trajectory to asthma begins already at birth and whether epigenetic mechanisms, specifically DNA methylation, contribute to asthma inception. Methods We used the Methylated CpG Island Recovery Assay chip to survey DNA methylation in cord blood mononuclear cells from 36 children (18 nonasthmatic and 18 asthmatic subjects by age 9 years) from the Infant Immune Study (IIS), an unselected birth cohort closely monitored for asthma for a decade. SMAD3 methylation in IIS (n = 60) and in 2 replication cohorts (the Manchester Asthma and Allergy Study [n = 30] and the Childhood Origins of Asthma Study [n = 28]) was analyzed by using bisulfite sequencing or Illumina 450K arrays. Cord blood mononuclear cell–derived IL-1β levels were measured by means of ELISA. Results Neonatal immune cells harbored 589 differentially methylated regions that distinguished IIS children who did and did not have asthma by age 9 years. In all 3 cohorts methylation in SMAD3, the most connected node within the network of asthma-associated, differentially methylated regions, was selectively increased in asthmatic children of asthmatic mothers and was associated with childhood asthma risk. Moreover, SMAD3 methylation in IIS neonates with maternal asthma was strongly and positively associated with neonatal production of IL-1β, an innate inflammatory mediator. Conclusions The trajectory to childhood asthma begins at birth and involves epigenetic modifications in immunoregulatory and proinflammatory pathways. Maternal asthma influences epigenetic mechanisms that contribute to the inception of this trajectory

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Mechanisms of Action of Kefir in Chronic Cardiovascular and Metabolic Diseases

    Get PDF
    The gut microbiota maintains a complex mutual interaction with different organs of the host. Whereas in normal conditions this natural community of trillions of microorganisms greatly contributes to the human health, gut dysbiosis is related with onset or worsening of diverse chronic systemic diseases. Thus, the reestablishment of gut microbiota homeostasis with consumption of prebiotics and probiotics may be a relevant strategy to prevent or attenuate several cardiovascular and metabolic complications. Among these functional foods, the synbiotic kefir, which is a fermented milk composed of a mixture of bacteria and yeasts, is currently the most used and has attracted the attention of health care professionals. The present review is focused on reports describing the feasibility of kefir consumption to provide benefits in cardiometabolic diseases, including hypertension, vascular endothelial dysfunction, dyslipidemia and insulin resistance. Interestingly, recent studies show that mechanisms of actions of kefir in cardiometabolic diseases include recruitment of endothelial progenitor cells, improvement of the balance vagal/sympathetic nervous system, diminution of excessive generation of reactive oxygen species, angiotensin converting enzyme inhibition, anti-inflammatory cytokines profile and alteration of the intestinal microbiota. These findings provide a better understanding about the mechanisms of the beneficial actions of kefir and motivate further investigations to determine whether the use of this synbiotic could also be translated into clinical improvements in cardiometabolic diseases

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Heteropolymeric Triplex-Based Genomic Assay® to Detect Pathogens or Single-Nucleotide Polymorphisms in Human Genomic Samples

    Get PDF
    Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are “canonical triplexes”. Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays

    Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements.</p> <p>Results</p> <p>We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer-approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in <it>Saccharomyces cerevisiae</it>. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast <it>Saccharomyces cerevisiae </it>to heat shock</p> <p>Conclusion</p> <p>Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.</p

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter
    corecore