111 research outputs found

    The orbits of outer planetary satellites using the Gaia data

    Full text link
    Launch of the Gaia space observatory started a new era in astrometry when the accuracy of star coordinates increased by thousands of times. Significant improvement of accuracy was also expected for the coordinates of the Solar system bodies. Gaia DR3 provided us with the data which could be used to test our expectations. In this work, we refine the orbits of a number of outer planetary satellites using both ground-based and Gaia observations. From thirteen outer satellites observed by Gaia, we chose six to obtain their orbits. Some specific moments in using observations of outer satellites made by Gaia are demonstrated. These pecularities stem from scanning motion of Gaia, in particular from the fact that the accuracy of observations is significantly different along and across the scanning direction. As expected, Gaia observations proved to be more precise than those made from Earth, which results in more accurate satellite ephemerides. We estimate accuracy of the ephemerides of considered satellites for the interval between 1996 and 2030. As astrometric positions published in Gaia DR3 were not corrected for the relativistic light deflection by the Sun, we took into account this effect, which slightly diminished the rms residuals. In addition, relativistic light deflection by the giant planets was estimated, which, as it turned out, can be neglected with the given accuracy of Gaia observations.Comment: accepted in MNRAS 28.03.2023, 9 pages, 8 figure

    Advances in the Study of Gas Hydrates by Dielectric Spectroscopy

    Get PDF
    The influence of kinetic hydrate inhibitors on the process of natural gas hydrate nucleation was studied using the method of dielectric spectroscopy. The processes of gas hydrate formation and decomposition were monitored using the temperature dependence of the real component of the dielectric constant Δâ€Č(T). Analysis of the relaxation times τ and activation energy ΔE of the dielectric relaxation process revealed the inhibitor was involved in hydrogen bonding and the disruption of the local structures of water molecules.publishedVersio

    Multi-functional oilfield production chemicals: maleic-based polymers for gas hydrate and corrosion inhibition

    Get PDF
    Several chemical problems can occur during the production of oil and gas through flow lines. This includes corrosion, scale deposition and gas hydrate plugging. Three separate chemicals may be needed to treat these issues. Kinetic hydrate inhibitors (KHIs) are used in cold oil or natural gas production flow lines to prevent the formation and plugging of the line with gas hydrates. They are often injected concomitantly with other production chemicals such as corrosion and scale inhibitors. KHIs are specific low molecular weight water-soluble polymers with amphiphilic groups formulated with synergists and solvents. However, many corrosion inhibitors (CIs) are antagonistic to the KHI polymer, severely reducing the KHI performance. It would be preferable and economic if the KHI also could act as a CI. We have explored the use of maleic-based copolymers as KHIs as well as their use as film-forming CIs. KHIs were tested using a natural gas mixture in high pressure rocking cells using the slow constant cooling test method. A terpolymer from reaction of vinyl acetate:maleic anhydride copolymer with cyclohexy lamine and 3,3-di-n-butylaminopropylamine (VA:MA-60% cHex-40% DBAPA), gave excellent performance as a KHI, better than the commercially available poly(N-vinyl caprolactam) (PVCap). CO2 corrosion inhibition was measured by Linear Polarization Resistance (LPR) in a 1 litre CO2 bubble test equipment using C1018 steel coupons. The new terpolymer gave good CO2 corrosion inhibition in 3.6 wt% brine, significantly better than PVCap, but not as good as a commercial imidazoline-based surfactant corrosion inhibitor. The terpolymer also showed good corrosion inhibition efficiency at high salinity conditions, (density 1.12 g/cm3). VA:MA-60% cHex-40% DBAPA shifted the open-circuit potential to more positive values and significantly decreased the corrosion rate.publishedVersio

    Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments

    Get PDF
    The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact.publishedVersio

    The Death Effector Domains of Caspase-8 Induce Terminal Differentiation

    Get PDF
    The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Effect of formation water and hydrochloric acid on the physical and chemical properties of polymer materials of high pressure pipelines used for transportation of crude oil

    No full text
    The purpose of the work is to conduct a comparative analysis of the stability of two types of polymer coatings to the effects of formation water and hydrochloric acid based on the analysis of mechanical properties, thermal stability and surface morphology. To accomplish the task, modern physical-chemical methods were used: differential scanning calorimetry, microscopy, an electromechanical universal testing machine, a dilatometer. Simulation of the effect of water at elevated temperatures and pressures on the polymer coating samples was carried out in an autoclave-reactor, the study of the effect of acid was carried out in a glass beaker. On the basis of the work carried out, results were obtained that show similarities and differences in the behavior of the polymer samples studied. The change of the dynamic modulus of elasticity and the coefficient of linear thermal expansion with increasing temperature is investigated. In general, it has been shown that PE-RT polymer has better characteristics than PE polymer. However, both of them are stable to the exposure of formation water and hydrochloric acid and can protect corrosion of high pressure pipes connections
    • 

    corecore