2,587 research outputs found

    Isospin mixing and the cubic isobaric multiplet mass equation in the lowest <i>T</i>=2, <i>A</i>=32 quintet

    Get PDF
    The isobaric multiplet mass equation (IMME) is known to break down in the first T = 2, A = 32 isospin quintet. In this work we combine high-resolution experimental data with state-of-the-art shell-model calculations to investigate isospin mixing as a possible cause for this violation. The experimental data are used to validate isospin-mixing matrix elements calculated with newly developed shell-model Hamiltonians. Our analysis shows that isospin mixing with nonanalog T = 1 states contributes to the IMME breakdown, making the requirement of an anomalous cubic term inevitable for the multiplet

    138Ba(d,α)^{138}{\rm Ba}(d,\alpha) study of states in 136Cs^{136}{\rm Cs}: Implications for new physics searches with xenon detectors

    Full text link
    We used the 138^{138}Ba(d,α)(d,\alpha) reaction to carry out an in-depth study of states in 136^{136}Cs, up to around 2.5~MeV. In this work, we place emphasis on hitherto unobserved states below the first 1+1^+ level, which are important in the context of solar neutrino and fermionic dark matter (FDM) detection in large-scale xenon experiments. We identify for the first time candidate metastable states in 136^{136}Cs, which would allow a real-time detection of solar neutrino and FDM events in xenon detectors, with high background suppression. Our results are also compared with shell-model calculations performed with three Hamiltonians that were previously used to evaluate the nuclear matrix element (NME) for 136^{136}Xe neutrinoless double beta decay. We find that one of these Hamiltonians, which also systematically underestimates the NME compared to the others, dramatically fails to describe the observed low-energy 136^{136}Cs spectrum, while the other two show reasonably good agreement

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore