16 research outputs found

    Comparison of MRI properties between multimeric DOTAGA and DO3A gadolinium-dendron conjugates

    Get PDF
    The inherent lack of sensitivity of MRI needs the development of new Gd contrast agents in order to extend 20Hz,37%, the application of this technique to cellular imaging. For this purpose, two multimeric MR contrast agents obtained by peptidic coupling between an amido amine dendron and GdDOTAGA chelates (premetalation strategy, G1-4GdDOTAGA) or DO3A derivatives which then were postmetalated (G1-4GdDO-3A) have been prepared. By comparison to the monomers, an increase of longitudinal relaxivity has been observed for both structures. Especially for G1-4GdDO-3A, a marked increase is observed between 20 and 60 MHz. This structure differs from G1-4GdDOTAGA by an increased rigidity due to the aromatic linker between each chelate and the organic framework. This has the effect of limiting local rotational movements, which has a positive impact on relaxivity

    Advances in the Mechanistic Understanding of Iron Oxide Nanoparticles' Radiosensitizing Properties

    Get PDF
    Among the plethora of nanosystems used in the field of theranostics, iron oxide nanoparticles (IONPs) occupy a central place because of their biocompatibility and magnetic properties. In this study, we highlight the radiosensitizing effect of two IONPs formulations (namely 7 nm carboxylated IONPs and PEG(5000)-IONPs) on A549 lung carcinoma cells when exposed to 225 kV X-rays after 6 h, 24 h and 48 h incubation. The hypothesis that nanoparticles exhibit their radiosensitizing effect by weakening cells through the inhibition of detoxification enzymes was evidenced by thioredoxin reductase activity monitoring. In particular, a good correlation between the amplification effect at 2 Gy and the residual activity of thioredoxin reductase was observed, which is consistent with previous observations made for gold nanoparticles (NPs). This emphasizes that NP-induced radiosensitization does not result solely from physical phenomena but also results from biological events

    Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy

    No full text
    Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy

    Magnetic triggers in biomedical applications – prospects for contact free cell sensing and guidance

    No full text
    In recent years, the inputs from magnetically assisted strategies have been contributing to the development of more sensitive screening methods and precise means of diagnosis to overcome existing and emerging treatment challenges. The features of magnetic materials enabling in vivo traceability, specific targeting and space- and time-controlled delivery of nanomedicines have highlighted the resourcefulness of the magnetic toolbox for biomedical applications and theranostic strategies. The breakthroughs in magnetically assisted technologies for contact-free control of cell and tissue fate opens new perspectives to improve healing and instruct regeneration reaching a wide range of diseases and disorders. In this review, the contribution of magnetic nanoparticles (MNPs) will be explored as sophisticated and versatile nanotriggers, evidencing their unique cues to probe and control cell function. As cells detect and engage external magnetic features, these approaches will be overviewed considering molecular engineering and cell programming perspectives as well as cell and tissue targeting modalities. The therapeutic relevance of MNPs will be also emphasized as key components of nanostructured systems to control the release of nanomedicines and in the context of new therapy technologies.ERC CoG grant MagTendon (No. 772817), H2020 Twinning project Achilles (No. 810850), FCT Project MagTT PTDC/CTM-CTM/29930/2017 (POCI-01-0145-FEDER29930), and project Norte-01-0145-FEDER-02219015 supported by Norte Portugal Regional Operational Programme (NORTE 2020). Ana F. Almeida is funded by Fundação para a Ciência e Tecnologia (FCT) – Doctoral Grant SFRD/BD/144816/201
    corecore