55 research outputs found

    Aqueous extraction of residual oil from sunflower press cake using a twin-screw extruder: Feasibility study

    Get PDF
    The objective of this study was to evaluate the feasibility of an aqueous process to extract the residual oil from sunflower press cakes using a co-rotating twin-screw extruder. Two different configurations were tested: the expression from whole seeds followed by the aqueous extraction, in two successive apparatus or in the same one. For the aqueous extraction stage, the oil yield depended on the operating conditions including screw rotation speed, screw profile, and inlet flow rates of press cakes and water. Liquid/solid separation required the addition of a lignocellulosic residue (wheat straw), upstream from the filtration zone. However, even with maximum fiber inlet flow (around 20% of the inlet flow rate of the solid matters for the highest amount of wheat straw), drying of the cake meal did not improve. The lixiviation of the material was also incomplete. Oil yield was better when the expression and the aqueous extraction were conducted in the same extruder. For all the trials carried out using such a configuration, the corresponding cake meal contained less than 10% residual oil, and the total oil yield was 78% in the best operating conditions. Nevertheless, the contribution of the aqueous extraction stage was extremely limited, less than 5% in the best trial, partly due to a ratio of the water to the press cake too low. For the aqueous extraction stage, the oil was extracted in the form of an oil-in-water emulsion whose stability was minimized because of its low proteins content due to their thermomechanical denaturation during the expression stage

    Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: Feasibility study and influence of operating conditions

    Get PDF
    The objective of this study was to evaluate the feasibility of an aqueous process to extract sunflower seed oil using a co-rotating twin-screw extruder. Aqueous extraction was carried out using whole seeds and the influence of the operating conditions on oil yield was examined. Operating conditions included screw profile, screw rotation speed, and input flow rates of sunflower seeds and water. Liquid/solid separation required the addition of a lignocellulosic residue upstream from the filtration zone. However, even with maximum fiber input flow, drying of the cake meal did not improve. The lixiviation of the sunflower seeds was also incomplete. The aqueous extraction of the oil was more efficient in the twin-screw extruder than the reference trial conducted in a batch reactor. The best oil extraction yield obtained was approximately 55% and the residual oil content of the cake meal was approximately 30%. The hydrophobic phases produced were oil-in-water emulsions. These emulsions were stabilized by phospholipids and proteins at the interface, which are natural surface-active agents co-extracted during the process

    Direct Calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture

    Get PDF
    This study investigated the use of a mixture of n-hexane and methanol as a binary solvent for the direct oil extraction and resin separation from Calophyllum seeds, in a single step. Optimal oil and resin yields and physicochemical properties were determined by identifying the best extraction conditions. The solvent mixture tested extracted oil and resin effectively from Calophyllum seeds, and separated resin from oil. Extraction conditions affected oil and resin yields and their physicochemical properties, with the n-hexane-to-methanol ratio being the most critical factor. Oil yield improved as n-hexane-to-methanol ratio increased from 0.5:1 to 2:1, and resin yield increased as methanol-to-n-hexane ratio increased from 0.5:1 to 2:1. Physicochemical properties of oil and resin, particularly for acid value and impurity content, improved as the n-hexane-to-methanol ratio decreased from 2:1 to 0.5:1. The best oil (51% with more than 95% triglycerides) and resin (18% with more than 5% polyphenols) yields were obtained with n-hexane-to-methanol ratios of 2:1 and 0.5:1, respectively, at a temperature of 50 °C, with an extraction time of 5 h. The best values for physicochemical property of oil were a density of 0.885 g/cm3, a viscosity of 26.0 mPa.s, an acid value of 13 mg KOH/g, an iodine value of 127 g/100 g, an unsaponifiable content of 1.5%, a moisture content of 0.8% and an ash content of 0.04%

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Sub-mitral aneurysm

    No full text

    Twin-Screw Extrusion: a key technology for the biorefinery

    No full text
    International audienceFor more than 30 years, the Laboratory of Agro-industrial Chemistry (LCA) develops an ambitious and multi-scale research topic on the use of twin-screw extrusion (TSE) for the processing of biomass for non-food applications. This chapter will give an overview of past and present projects, discussing specific operating conditions and their consequences on biopolymer native organization. For the production of agro-materials, compounding processes have been designed and in some cases industrialized integrating specific targeted actions such as the plasticization of primary cell-walls (sugar beet, tobacco), the "fusion" of storage polymers (starch, oilseed proteins) and/or the destructuring of secondary cell-walls (lignocellulosic fibers). For the pretreatment of lignocellulosic fibers, the conjugated use of chemicals is also discussed. Those processes have also been coupled with biodegradable polyester blending (involving compatibilization with acid citric) and compounding. In integrated biorefining processes, TSE may also be used simultaneously as a continuous liquid-solid extractor through mechanical pressing or solvent extraction, for extracting oil, polysaccharides, proteins, polyphenols or hydroxycinnamic acids and as a pre-treatment of the fibrous raffinate. This is especially efficient for the processing of oilseed crops and the production of binderless fiberboards or to prepare technical fibers for composite applications. This has been widely demonstrated on sunflower, jatropha or more recently coriander. Finally, in the bioenergy field, a specific pretreatment process for the production of bioethanol from lignocellulosic feedstock has been developed and is actually in the up-scaling phase. Integrating the use of enzymes in a one-step TSE, this process has been called "bioextrusion"
    corecore