30 research outputs found

    Reverse genetics system for shuni virus, an emerging orthobunyavirus with zoonotic potential

    Get PDF
    The genus Orthobunyavirus (family Peribunyaviridae, order Bunyavirales) comprises over 170 named mosquito- and midge-borne viruses, several of which cause severe disease in animals or humans. Their three-segmented genomes enable reassortment with related viruses, which may result in novel viruses with altered host or tissue tropism and virulence. One such reassortant, Schmallenberg virus (SBV), emerged in north-western Europe in 2011. Shuni virus (SHUV) is an orthobunyavirus related to SBV that is associated with neurological disease in horses in southern Africa and recently caused an outbreak manifesting with neurological disease and birth defects among ruminants in Israel. The zoonotic potential of SHUV was recently underscored by its association with neurological disease in humans. We here report a reverse genetics system for SHUV and provide first evidence that the non-structural (NSs) protein of SHUV functions as an antagonist of host innate immune responses. We furthermore report the rescue of a reassortant containing the L and S segments of SBV and the M segment of SHUV. This novel reverse genetics system can now be used to study SHUV virulence and tropism, and to elucidate the molecular mechanisms that drive reassortment events.The Dutch Ministry of Agriculture, Nature and Food Quality of the Netherlands and the European Union’s Horizon 2020 research and innovation programme under LEAP-Agri grant agreement No 727715.http://www.mdpi.com/journal/viruseshj2020Medical Virolog

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Soil Processes, Pedofeatures and Microscale Metal Distributions: Relevant Study of Contaminant-Dynamics Calls for Pedology-Based Soil-Depth Sampling Strategies

    No full text
    International audienceShort-term variations of soil conditions affect the form, mobility and bioavailability of metal pollutants. Released metals migrate toward depth where they are intercepted or precipitate, leading to variable spatial metal distribution patterns, at a macro-, meso- and microscale. Studies at a mesoscale give access to trace metal (TM) associations induced by pedological processes. Although scarcely documented, such meso-scale studies represent an essential step for relevant environmental risk assessment, halfway between field- and molecular-scale investigations. We argued for such approach by performing optical microscopy and micro-X-ray fluorescence on thin sections from two soils, contaminated either by industrial zinc-smelter waste or by urban wastewater. Consistent correlation between key indicators of pedological processes (Fe, Mn, and Ca) and trace metals (Zn, Pb, and Cu) on some 20 elemental maps of TM-hosting soil constituents and pedofeatures reveal distinct coinciding localizations, illustrating TM-accumulation via interception or (co)-precipitation processes. Micromorphological interpretation of characteristic pedofeatures in subsurface horizons (crystals, argillans, ferrans, and mangans) containing significant amounts of TM provide valuable insight into the contaminant dynamics in terms of lixiviation, colloidal transport, redox conditions, or fungal activity. Our mesoscale approach stresses the importance of pedology-based sampling strategies, instead of systematic soil-depth sampling, for soil contamination research in natural ecosystem

    Reconstitution de cent années d’irrigation massive par des eaux usées brutes et migration des éléments traces métalliques dans un Luvisol sableux

    Get PDF
    Trace metal inputs reconstitution and migration assessment in a sandy Luvisol after 100 years of massive irrigation with raw wastewaters. Raw wastewaters were massively spread on sandy luvisols near Paris from 1899 to 2002, leading to high trace metals (TM) pollution of soils. Mass balance calculations were performed on a soil profile to assess vertical migration of TM. The contamination was estimated by subtracting the natural pedo-geochemical background of the horizons. TM inputs were estimated using Cr as an invariant. It is shown that Pb and Cr remained in the surface horizon, while Ni, Cd, Cu and Zn migrated downward, being more or less trapped depending on the physicochemical properties of the horizons

    Impact de l'apport de boues de stations d'épuration: intérêt du croisement du parcellaire et de la carte des sols dans le Vexin

    No full text
    résumé + poster *INRA Science du Sol route de Saint-Cyr 78026 Versailles Cedex (FRA) Diffusion du document : INRA Science du Sol route de Saint-Cyr 78026 Versailles Cedex (FRA)National audienc

    Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography

    Full text link
    Various approaches have been used to estimate metal pollutant element (TE) contents at unsampled locations in a 15-ha contaminated site located in the plain of Pierrelaye–Bessancourt (about 24 km Northwest of Paris). 87 samples of soil plough layer were randomly sampled at each mesh of a regular square grid over the whole study area and the total contents of Cd, Cr, Cu, Ni, Pb, and Zn were measured. A first set of 50 measurements, randomly selected from the 87 samples, was used for the prediction and another set of 37 measurements was kept for the validation. Topsoil organic carbon contents (SOC) were measured at 75 sites with 50 measurements sharing the same locations as TE. An aerial photography of the study area showing bare soils was selected for relating brightness intensities and SOC. Mapping procedures used were ordinary kriging (OK), cokriging (COK), collocated cokriging (CC), and kriging with external drift (KED). SOC maps used as exhaustively sampled information in KED and CC of TE were obtained by KED and CC procedures, respectively, accounting for 75 SOC measurements and the brightness intensities of numerical counts provided by the visible bands of the aerial photograph bare soils. Consequently, for each TE, four maps were generated: two maps resulting from KED and CC procedures (KED-SOC75P, CC-SOC75P), another one provided by standard cokriging (COK-TE50SOC75) accounting for TE prediction set plus 75 SOC measurements, and the last one corresponding to that estimated by ordinary kriging from only prediction set measurements (OK50). Three indices: (1) the mean prediction error (ME) and the mean absolute prediction error (|ME|); (2) the root mean square error (RMSE); and (3) the relative improvement (RI) of accuracy, as well as residuals analysis, were computed from the validation set (observed data) and predicted values. On the 37 test data, the results showed that the more accurate predictions were systematically those obtained by kriging accounting for SOC map predicted by KED from 75 SOC measurements and brightness values of the aerial photo (KED-SOC75P) followed closely by CC-SOC75P procedure, except for Cu and Zn where CC-SOC75P appeared to be slightly more accurate than KED-SOC75P. In regard to the RI of accuracy between prediction methods, the results confirmed once for all the benefit of accounting for SOC data set plus the exhaustively sampled information provided by the aerial photography regardless of the considered TE. Nevertheless, for Cd, Pb, and Zn, the RI of accuracy was less than 20% between the two most accurate methods (KED-SOC75P and CC-SOC75P) and standard cokriging in which the information provided by the aerial photography is ignored when mapping. The sensitivity of KED-SOC75P and CC-SOC75P approaches to the sampling density of the target variables (TE) was assessed using 10 random subsets of different sizes (25 and 33 observations) drawn from a prediction set that includes 50 data. Results have shown that the TE estimates by KED-SOC75P and CC-SOC75P approaches using only 25 TE samples were much more accurate than the estimates performed by OK50 and COK-TE50SOC75 approaches that use the whole samples of the prediction set. Moreover, the RI of accuracy was reduced by less than 15% if the original sampling density was reduced by a third

    Assessing antibiotic contamination in metal contaminated soils four years after cessation of long-term waste water irrigation.

    No full text
    International audienceSpreading of urban wastewater on agricultural land may lead to concomitant input of organic and inorganic pollutants. Such multiple pollution sites offer unique opportunities to study the fate of both heavy metals and pharmaceuticals. We examined the occurrence and fate of selected antibiotics in sandy-textured soils, sampled four years after cessation of 100 years irrigation with urban wastewater from the Paris agglomeration. Previous studies on heavy metal contamination of these soils guided our sampling strategy. Six antibiotics were studied, including quinolones, with a strong affinity for organic and mineral soil components, and sulfonamides, a group of more mobile molecules. Bulk samples were collected from surface horizons in different irrigation fields, but also in subsurface horizons in two selected profiles. In surface horizons, three quinolones (oxolinic acid, nalidixic acid, and flumequine) were present in eight samples out of nine. Their contents varied spatially, but were well-correlated one to another. Their distributions showed great similarities regarding spatial distribution of total organic carbon and heavy metal contents, consistent with a common origin by wastewater irrigation. Highest concentrations were observed for sampling sites close to irrigation water outlets, reaching 22 μgkg−1 for nalidixic acid.Within soil profiles, the two antibiotic groups demonstrated an opposite behavior: quinolones, found only in surface horizons; sulfamethoxazole, detected in clay-rich subsurface horizons, concomitant with Zn accumulation. Such distribution patterns are consistent with chemical adsorption properties of the two antibiotic groups: immobilization of quinolones in the surface horizons ascribed to strong affinity for organicmatter (OM),migration of sulfamethoxazole due to a lower affinity for OM and its interception and retention in electronegative charged clay-rich horizons. Our work suggests that antibiotics may represent a durable contamination of soils, and risks for groundwater contamination, depending on the physicochemical characteristics both of the organic molecules and of soil constituents
    corecore