166 research outputs found

    Enhanced adenosine A(1) receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior

    Get PDF
    Resilience to stress is critical for the development of depression. Enhanced adenosine A1 receptor (A1R) signaling mediates the antidepressant effects of acute sleep deprivation (SD). However, chronic SD causes long-lasting upregulation of brain A1R and increases the risk of depression. To investigate the effects of A1R on mood, we utilized two transgenic mouse lines with inducible A1R overexpression in forebrain neurons. These two lines have identical levels of A1R increase in the cortex, but differ in the transgenic A1R expression in the hippocampus. Switching on the transgene promotes robust antidepressant and anxiolytic effects in both lines. The mice of the line without transgenic A1R overexpression in the hippocampus (A1Hipp-) show very strong resistance towards development of stress-induced chronic depression-like behavior. In contrast, the mice of the line in which A1R upregulation extends to the hippocampus (A1Hipp+), exhibit decreased resilience to depression as compared to A1Hipp-. Similarly, automatic analysis of reward behavior of the two lines reveals that depression resistant A1Hipp-transgenic mice exhibit high sucrose preference, while mice of the vulnerable A1Hipp + line developed stress-induced anhedonic phenotype. The A1Hipp + mice have increased Homer1a expression in hippocampus, correlating with impaired long-term potentiation in the CA1 region, mimicking the stressed mice. Furthermore, virus-mediated overexpression of Homer1a in the hippocampus decreases stress resilience. Taken together our data indicate for first time that increased expression of A1R and Homer1a in the hippocampus modulates the resilience to stress-induced depression and thus might potentially mediate the detrimental effects of chronic sleep restriction on mood

    Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation

    Get PDF
    Conventional antidepressants have limited efficacy and many side effects, highlighting the need for fast-acting and specific medications. Induction of the synaptic protein Homer1a mediates the effects of different antidepressant treatments, including the rapid action of ketamine and sleep deprivation (SD). We show here that mimicking Homer1a upregulation via intravenous injection of cell-membrane-permeable TAT-Homer1a elicits rapid antidepressant effects in various tests. Similar to ketamine and SD, in vitro and in vivo application of TAT-Homer1a enhances mGlu5 signaling, resulting in increased mTOR pathway phosphorylation, and upregulates synaptic AMPA receptor expression and activity. The antidepressant action of SD and Homer1a induction depends on mGlu5 activation specifically in excitatory CaMK2a neurons and requires enhanced AMPA receptor activity, translation, and trafficking. Moreover, our data demonstrate a pronounced therapeutic potential of different TAT-fused peptides that directly modulate mGlu5 and AMPA receptor activity and thus might provide a novel strategy for rapid and effective antidepressant treatment

    Evaluation of the sustainability of contrasted pig farming systems: the procedure, the evaluated systems and the evaluation tools

    Get PDF
    Although a few studies consider the sustainability of animal farming systems along the three classical main pillars (economy, environment and society), most studies on pig farming systems address only one of these pillars. The present paper is the introduction to a series of companion papers presenting the results of a study undertaken within the EU-supported project Q-PorkChains, aiming at building a comprehensive tool for the evaluation of pig farming systems, which is robust to accommodate the large variability of systems existing in Europe. The tool is mostly based on questions to farmers and comprises a total of 37 dimensions distributed along eight themes: Animal Welfare, Animal Health, Breeding Programmes, Environmental Sustainability, Meat Safety, Market Conformity, Economy and Working Conditions. The paper describes the procedure that was used for building the tool, using it on 15 contrasted pig farming systems and analysing the results. The evaluated systems are briefly described and a short overview of the dimensions is provided. Detailed descriptions of the theme-wise tools and results, as well as the results of an integrated evaluation, are available in the companion paper

    Rationale and design of the randomised clinical trial comparing early medication change (EMC) strategy with treatment as usual (TAU) in patients with Major Depressive Disorder - the EMC trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Major Depressive Disorder (MDD), the traditional belief of a delayed onset of antidepressants' effects has lead to the concept of current guidelines that treatment durations should be between 3-8 weeks before medication change in case of insufficient outcome. Post hoc analyses of clinical trials, however, have shown that improvement usually occurs within the first 10-14 days of treatment and that such early improvement (Hamilton Depression Rating Scale [HAMD] decrease ≥20%) has a substantial predictive value for final treatment outcome. Even more important, non-improvement (HAMD decrease <20%) after 14 days of treatment was found to be highly predictive for a poor final treatment outcome.</p> <p>Methods/Design</p> <p>The EMC trial is a phase IV, multi-centre, multi-step, randomized, observer-blinded, actively controlled parallel-group clinical trial to investigate for the first time prospectively, whether non-improvers after 14 days of antidepressant treatment with an early medication change (EMC) are more likely to attain remission (HAMD-17 ≤7) on treatment day 56 compared to patients treated according to current guideline recommendation (treatment as usual; TAU). In level 1 of the EMC trial, non-improvers after 14 days of antidepressant treatment will be randomised to an EMC strategy or TAU. The EMC strategy for this study schedules a first medication change on day 15; in case of non-improvement between days 15-28, a second medication change will be performed. TAU schedules the first medication change after 28 days in case of non-response (HAMD-17 decrease <50%). Both interventions will last 42 days. In levels 2 and 3, EMC strategies will be compared with TAU strategies in improvers on day 14, who experience a stagnation of improvement during the course of treatment. The trial is supported by the German Federal Ministry of Education and Research (BMBF) and will be conducted in cooperation with the BMBF funded Interdisciplinary Centre Clinical Trials (IZKS) at the University Medical Centre Mainz and at six clinical trial sites in Germany.</p> <p>Discussion</p> <p>If the EMC strategies lead to significantly more remitters, changes of clinical practice, guidelines for the treatment of MDD as well as research settings can be expected.</p> <p>Trial Registration</p> <p><b>Clincaltrials.gov Identifier</b>: NCT00974155; <b>EudraCT</b>: 2008-008280-96.</p

    Functional selectivity of adenosine receptor ligands

    Get PDF
    Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins
    corecore