114 research outputs found

    Oral tolerance to cancer can be abrogated by T regulatory cell inhibition

    Get PDF
    Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue – JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups - this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the gut

    DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is associated with pathogenic autoimmunity primarily focused on major CNS-myelin target antigens including myelin basic protein (MBP), proteolipidprotein (PLP), myelin oligodendrocyte protein (MOG). MS is a complex trait whereby the HLA genes, particularly class-II genes of HLA-DR15 haplotype, dominate the genetic contribution to disease-risk. Due to strong linkage disequilibrium in HLA-II region, it has been hard to establish precisely whether the functionally relevant effect derives from the DRB1*1501, DQA1*0102-DQB1*0602, or DRB5*0101 loci of HLA-DR15 haplotype, their combinations, or their epistatic interactions. Nevertheless, most genetic studies have indicated DRB1*1501 as a primary risk factor in MS. Here, we used 'HLA-humanized' mice to discern the potential relative contribution of DRB1*1501 and DQB1*0602 alleles to susceptibility to "humanized" MS-like disease induced by PLP, one of the most prominent and encephalitogenic target-antigens implicated in human MS.</p> <p>Methods</p> <p>The HLA-DRB1*1501- and HLA-DQB1*0602-Tg mice (MHC-II<sup>-/-</sup>), and control non-HLA-DR15-relevant-Tg mice were immunized with a set of overlapping PLP peptides or with recombinant soluble PLP for induction of "humanized" MS-like disease, as well as for ex-vivo analysis of immunogenic/immunodominant HLA-restricted T-cell epitopes and associated cytokine secretion profile.</p> <p>Results</p> <p>PLP autoimmunity in both HLA-DR15-Tg mice was focused on 139-151 and 175-194 epitopes. Strikingly, however, the HLA-DRB1*1501-transgenics were refractory to disease induction by any of the overlapping PLP peptides, while HLA-DQB1*0602 transgenics were susceptible to disease induction by PLP139-151 and PLP175-194 peptides. Although both transgenics responded to both peptides, the PLP139-151- and PLP175-194-reactive T-cells were directed to Th1/Th17 phenotype in DQB1*0602-Tg mice and towards Th2 in DRB1*1501-Tg mice.</p> <p>Conclusions</p> <p>While genome studies map a strong MS susceptibility effect to the region of DRB1*1501, our findings offer a rationale for potential involvement of pathogenic DQ6-associated autoimmunity in MS. Moreover, that DQB1*0602, but not DRB1*1501, determines disease-susceptibility to PLP in HLA-transgenics, suggests a potential differential, functional role for DQB1*0602 as a predisposing allele in MS. This, together with previously demonstrated disease-susceptibility to MBP and MOG in DRB1*1501-transgenics, also suggests a differential role for DRB1*1501 and DQB1*0602 depending on target antigen and imply a potential complex 'genotype/target antigen/phenotype' relationship in MS heterogeneity.</p

    Phylogeography and Molecular Evolution of Potato virus Y

    Get PDF
    Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVYO, PVYN and PVYC) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used Bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and covariation analyses to identify evolutionarily relevant amino acid residues. Our results show that both geographic and host-driven adaptations explain PVY diversification. Furthermore, purifying selection is the main force driving PVY evolution, although some indications of positive selection accounted for the diversification of the different strains. Interestingly, the analysis of P3N-PIPO, a recently described gene in potyviruses, seems to show a variable length among the isolates analyzed, and this variability is explained, in part, by host-driven adaptation

    SIRT1 Promotes N-Myc Oncogenesis through a Positive Feedback Loop Involving the Effects of MKP3 and ERK on N-Myc Protein Stability

    Get PDF
    The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc–induced neuroblastoma

    At the bottom of the differential diagnosis list: unusual causes of pediatric hypertension

    Get PDF
    Hypertension affects 1–5% of children and adolescents, and the incidence has been increasing in association with obesity. However, secondary causes of hypertension such as renal parenchymal diseases, congenital abnormalities and renovascular disorders still remain the leading cause of pediatric hypertension, particularly in children under 12 years old. Other less common causes of hypertension in children and adolescents, including immobilization, burns, illicit and prescription drugs, dietary supplements, genetic disorders, and tumors will be addressed in this review

    Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level

    Get PDF
    Background: The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results: We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions: P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength

    Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence

    Get PDF
    Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro
    corecore