413 research outputs found

    Collaborative Virtual Training with Physical and Communicative Autonomous Agents

    Get PDF
    International audienceVirtual agents are a real asset in collaborative virtual environment for training (CVET) as they can replace missing team members. Collaboration between such agents and users, however, is generally limited. We present here a whole integrated model of CVET focusing on the abstraction of the real or virtual nature of the actor to define a homogenous collaboration model. First, we define a new collaborative model of interaction. This model notably allows to abstract the real or virtual nature of a teammate. Moreover, we propose a new role exchange approach so that actors can swap their roles during training. The model also permits the use of physically based objects and characters animation to increase the realism of the world. Second, we design a new communicative agent model, which aims at improving collaboration with other actors using dialog to coordinate their actions and to share their knowledge. Finally, we evaluated the proposed model to estimate the resulting benefits for the users and we show that this is integrated in existing CVET applications

    Impact of Preoperative Chemotherapy Features on Patient Outcomes after Hepatectomy for Initially Unresectable Colorectal Cancer Liver Metastases: A LiverMetSurvey Analysis

    Get PDF
    Liver metastases; Liver resection; Preoperative chemotherapyMetĂĄstasis hepĂĄticas; ResecciĂłn hepĂĄtica; Quimioterapia preoperatoriaMetĂ stasis hepĂ tiques; ResecciĂł hepĂ tica; QuimioterĂ pia preoperatĂČriaBackground: Prognostic factors have been extensively reported after resection of colorectal liver metastases (CLM); however, specific analyses of the impact of preoperative systemic anticancer therapy (PO-SACT) features on outcomes is lacking. Methods: For this real-world evidence study, we used prospectively collected data within the international surgical LiverMetSurvey database from all patients with initially-irresectable CLM. The main outcome was Overall Survival (OS) after surgery. Disease-free (DFS) and hepatic-specific relapse-free survival (HS-RFS) were secondary outcomes. PO-SACT features included duration (cumulative number of cycles), choice of the cytotoxic backbone (oxaliplatin- or irinotecan-based), fluoropyrimidine (infusional or oral) and addition or not of targeted monoclonal antibodies (anti-EGFR or anti-VEGF). Results: A total of 2793 patients in the database had received PO-SACT for initially irresectable diseases. Short (<7 or <13 cycles in 1st or 2nd line) PO-SACT duration was independently associated with longer OS (HR: 0.85 p = 0.046), DFS (HR: 0.81; p = 0.016) and HS-RFS (HR: 0.80; p = 0.05). All other PO-SACT features yielded basically comparable results. Conclusions: In this international cohort, provided that PO-SACT allowed conversion to resectability in initially irresectable CLM, surgery performed as soon as technically feasible resulted in the best outcomes. When resection was achieved, our findings indicate that the choice of PO-SACT regimen had a marginal if any, impact on outcomes

    An interaction abstraction model for seamless avatar exchange in CVET

    Get PDF
    International audienceCollaboration and interaction between users and virtual humans in virtual environments is a crucial challenge, notably for Collaborative Virtual Environments for Training (CVET). A training procedure, indeed, often involves several actors: trainees, teammates and many times a trainer. Yet, a major benefit of CVET is to propose to users to be trained even if the required number of person needed by the procedure is not available. Therefore, almost every CVET use autonomous virtual humans to replace the missing person. In this paper, we present the main results of our project that aims at improving the effective collaboration between users and virtual humans involved in a complex task within CVET. Using an entity called the "Shell", we are able to wrap the features common to both users and virtual humans. It gives us an abstraction level to pool the management of the main processes useful to control an avatar, interact with the environment and gather knowledge from a CVET. Besides, the Shell allows seamless exchange of avatars during a procedure. Thanks to the Shell, the exchange can be carried out at any time during a task while preserving all the data associated to a role in a procedure

    PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways

    Get PDF
    The repair of toxic double-strand breaks (DSB) is critical for the maintenance of genome integrity. The major mechanisms that cope with DSB are: homologous recombination (HR) and classical or alternative nonhomologous end joining (C-NHEJ versus A-EJ). Because these pathways compete for the repair of DSB, the choice of the appropriate repair pathway is pivotal. Among the mechanisms that influence this choice, deoxyribonucleic acid (DNA) end resection plays a critical role by driving cells to HR, while accurate C-NHEJ is suppressed. Furthermore, end resection promotes error-prone A-EJ. Increasing evidence define Poly(ADP-ribose) polymerase 3 (PARP3, also known as ARTD3) as an important player in cellular response to DSB. In this work, we reveal a specific feature of PARP3 that together with Ku80 limits DNA end resection and thereby helps in making the choice between HR and NHEJ pathways. PARP3 interacts with and PARylates Ku70/Ku80. The depletion of PARP3 impairs the recruitment of YFP-Ku80 to laser-induced DNA damage sites and induces an imbalance between BRCA1 and 53BP1. Both events result in compromised accurate C-NHEJ and a concomitant increase in DNA end resection. Nevertheless, HR is significantly reduced upon PARP3 silencing while the enhanced end resection causes mutagenic deletions during A-EJ. As a result, the absence of PARP3 confers hypersensitivity to anti-tumoral drugs generating DSB

    Collaborative Virtual Training with Physical and Communicative Autonomous Agents

    Get PDF
    International audienceVirtual agents are a real asset in collaborative virtual environment for training (CVET) as they can replace missing team members. Collaboration between such agents and users, however, is generally limited. We present here a whole integrated model of CVET focusing on the abstraction of the real or virtual nature of the actor to define a homogenous collaboration model. First, we define a new collaborative model of interaction. This model notably allows to abstract the real or virtual nature of a teammate. Moreover, we propose a new role exchange approach so that actors can swap their roles during training. The model also permits the use of physically based objects and characters animation to increase the realism of the world. Second, we design a new communicative agent model, which aims at improving collaboration with other actors using dialog to coordinate their actions and to share their knowledge. Finally, we evaluated the proposed model to estimate the resulting benefits for the users and we show that this is integrated in existing CVET applications

    A global database for metacommunity ecology, integrating species, traits, environment and space

    Get PDF
    The use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. Although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. To address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; “CESTES”. Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. The CESTES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CESTES database provides an important opportunity for synthetic trait-based research in community ecology

    Surface proteins of Shiga toxin-producing Escherichia coli mediate association with milk fat globules in raw milk

    Get PDF
    IntroductionBy adhering to host cells and colonizing tissues, bacterial pathogens can successfully establish infection. Adhesion is considered the first step of the infection process and bacterial adhesion to anti-adhesive compounds is now seen as a promising strategy to prevent infectious diseases. Among the natural sources of anti-adhesive molecules, the membrane of milk fat globules (MFGs) is of interest because of its compositional diversity of proteins and glycoconjugates. However, few studies have focused on the bacterial molecules involved in MFG- mediated inhibition of bacterial adhesion to enterocytes.MethodsWe used three pathogenic Shiga toxin-producing Escherichia coli (STEC) strains (O26:H11 str. 21765, O157:H7 str. EDL933, and O103:H3 str. PMK5) as models to evaluate whether STEC surface proteins are involved in the affinity of STEC for MFG membrane proteins (MFGMPs). The affinity of STEC for MFGMPs was assessed both indirectly by a natural raw milk creaming test and directly by an adhesion test. Mass spectrometry was used to identify enriched STEC proteins within the protein fraction of MFGMs. Bacterial mutants were constructed and their affinity to MFGs were measured to confirm the role of the identified proteins.ResultsWe found that free STEC surface proteins inhibit the concentration of the pathogen in the MFG-enriched cream in a strain-dependent manner. Moreover, the OmpA and FliC proteins were identified within the protein fraction of MFGMs. Our results suggest that FliC protein participates in STEC adhesion to MFGMPs but other STEC molecules may also participate.DiscussionFor the first time, this study highlighted, the involvement of STEC surface proteins in the affinity for MFGs. The mechanism of STEC-MFG association is still not fully understood but our results confirm the existence of receptor/ligand type interactions between the bacteria and MFGs. Further studies are needed to identify and specify the molecules involved in this interaction. These studies should consider the likely involvement of several factors, including adhesion molecules, and the diversity of each STEC strain

    An in vitro model to assess the immunosuppressive effect of tick saliva on the mobilization of inflammatory monocyte-derived cells

    Get PDF
    Tick-borne pathogens cause potent infections. These pathogens benefit from molecules contained in tick saliva that have evolved to modulate host innate and adaptive immune responses. This is called "saliva-activated transmission" and enables tick-borne pathogens to evade host immune responses. Ticks feed on their host for relatively long periods; thus, mechanisms counteracting the inflammation-driven recruitment and activation of innate effector cells at the bite site, are an effective strategy to escape the immune response. Here, we developed an original in vitro model to evaluate and to characterize the immunomodulatory effects of tick saliva that prevent the establishment of a local inflammatory immune response. This model mimics the tick bite and enables the assessment of the effect of saliva on the inflammatory-associated dynamic recruitment of cells from the mononuclear phagocyte system. Using this model, we were able to recapitulate the dual effect of tick saliva on the mobilization of inflammatory monocyte-derived cells, i.e. (i) impaired recruitment of monocytes from the blood to the bite wound; and (ii) poor mobilization of monocyte-derived cells from the skin to the draining lymph node. This simple tool reconstitutes the effect of tick saliva in vivo, which we characterized in the mouse, and should enable the identification of important factors facilitating pathogen infection. Furthermore, this model may be applied to the characterization of any pathogen-derived immunosuppressive molecule affecting the establishment of the inflammatory immune response
    • 

    corecore