116 research outputs found

    MindMusic: Brain-Controlled Musical Improvisation

    Get PDF
    MindMusic explores a new form of creative expression through brain controlled musical improvisation. Using EEG technology and a musical improviser system, Impro-Visor (Keller, 2018), MindMusic engages users in musical improvisation sessions controlled with their brainwaves. Brain-controlled musical improvisation offers a unique blend of mindfulness meditation, EEG biofeedback, and real-time music generation, and stands to assist with stress reduction and widen access to musical creativity

    O perfil de vítimas-agressoras nas regiões de ensino do Distrito Federal

    Get PDF
    O grupo de vítimas-agressoras emerge com uma peculiaridade de perpetuar o bullying pela resposta agressiva de vítimas, frente a agressão sofrida. Mantendo, dessa maneira, esse ciclo de violência. A pesquisa se caracteriza enquanto um estudo descritivo e transversal de abordagem quantitativa. Neste estudo, os dados foram provenientes de um banco de dados secundário. O objetivo foi identificar o perfil e dinâmica do bullying na perspectiva de vítimas-agressoras nas regiões de ensino do Distrito Federal. Dos 89 estudantes, 52,80% (47) são do sexo feminino, 70,77% (63) são da cor/raça parda ou branca e 66,29% (59) relataram nunca ter reprovado. O presente estudo demonstrou que nesse ciclo de produção e reprodução da violência, estão envolvidas, em sua maioria, meninas, do sexto ao nono ano, têm de 12 a 14 anos de idade e referiram sentir raiva ou pena do agressor. As manifestações mais relatas foram as agressões verbais (apelidar, zoar e fazer fofoca).https://repositorio.uniceub.br/jspui/retrieve/37145/21486572.pd

    NMR-Enhanced Crystallography Aids Open Metal–Organic Framework Discovery Using Solvent-Free Accelerated Aging

    Get PDF
    We demonstrate the combined use of NMR-enhanced crystallography and solvent-free synthesis by accelerated aging (AA), for the discovery and structural characterization of a novel cadmium-based open metal–organic framework (MOF) belonging to the class of zeolitic imidazolate frameworks (ZIFs). Although solid-state NMR spectroscopy has been used to assist in structural characterization of crystalline solids by powder X-ray diffraction (PXRD), typically through quantification of the contents of the asymmetric unit, this work highlights how it can take a more active role in guiding structure determination, by elucidating the coordination environment of the metal node in a novel MOFs. Exploration of AA reactions of cadmium oxide (CdO) and 2-methylimidazole (HMeIm) enabled the synthesis of not only the previously reported yqt1-topology framework but also a new material (1) exhibiting a Cd/MeIm ratio of 1:3, contrasting the 1:2 ratio expected for a ZIF. Structural characterization of 1 was enabled by using 111Cd solid-state nuclear magnetic resonance (SSNMR) to provide information on the coordination environment of the cadmium node. Specifically, 111Cd SSNMR experiments were conducted on a series of model compounds to correlate the cadmium coordination environment to the observed isotropic chemical shift, δiso(111Cd), followed by multinuclear SSNMR experiments on 1 to determine the nature of the metal coordination environment and the number of distinct chemical sites. This information was used in refinement of the molecular level structure from the available PXRD data, a technique termed NMR-enhanced crystallography, revealing that 1 is an open diamondoid (dia) topology Cd(MeIm)2 framework based on Cd2+ ions tetrahedrally coordinated with MeIm– ligands and additional HMeIm guest molecules within the framework pores. Although AA was initially devised as a clean, mild route for making MOFs, these results provide a proof-of-principle of how, by combining it with SSNMR spectroscopy as a means to overcome limitations of PXRD structure determination, it can be used to screen for new solid phases in the absence of solvents, high temperatures, or mechanical impact that are inherent to other thermally-, solution-, or mechanochemically-based techniques

    Halogen bonding with carbon:directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures †

    Get PDF
    Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In &gt;90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.</p

    Improving the Study of Protein Glycosylation with New Tools for Glycopeptide Enrichment

    Get PDF
    High confidence methods are needed for determining the glycosylation profiles of complex biological samples as well as recombinant therapeutic proteins. A common glycan analysis workflow involves liberation of N-glycans from glycoproteins with PNGase F or O-glycans by hydrazinolysis prior to their analysis. This method is limited in that it does not permit determination of glycan attachment sites. Alternative proteomics-based workflows are emerging that utilize site-specific proteolysis to generate peptide mixtures followed by selective enrichment strategies to isolate glycopeptides. Methods designed for the analysis of complex samples can yield a comprehensive snapshot of individual glycans species, the site of attachment of each individual glycan and the identity of the respective protein in many cases. This chapter will highlight advancements in enzymes that digest glycoproteins into distinct fragments and new strategies to enrich specific glycopeptides

    Copy number architectures define treatment-mediated selection of lethal prostate cancer clones

    Get PDF
    Despite initial responses to hormone treatment, metastatic prostate cancer invariably evolves to a lethal state. To characterize the intra-patient evolutionary relationships of metastases that evade treatment, we perform genome-wide copy number profiling and bespoke approaches targeting the androgen receptor (AR) on 167 metastatic regions from 11 organs harvested post-mortem from 10 men who died from prostate cancer. We identify diverse and patient-unique alterations clustering around the AR in metastases from every patient with evidence of independent acquisition of related genomic changes within an individual and, in some patients, the co-existence of AR-neutral clones. Using the genomic boundaries of pan-autosome copy number changes, we confirm a common clone of origin across metastases and diagnostic biopsies, and identified in individual patients, clusters of metastases occupied by dominant clones with diverged autosomal copy number alterations. These autosome-defined clusters are characterized by cluster-specific AR gene architectures, and in two index cases are topologically more congruent than by chance (p-values 3.07 × 10-8 and 6.4 × 10-4). Integration with anatomical sites suggests patterns of spread and points of genomic divergence. Here, we show that copy number boundaries identify treatment-selected clones with putatively distinct lethal trajectories

    Copy number architectures define treatment-mediated selection of lethal prostate cancer clones

    Get PDF
    Despite initial responses to hormone treatment, metastatic prostate cancer invariably evolves to a lethal state. To characterize the intra-patient evolutionary relationships of metastases that evade treatment, we perform genome-wide copy number profiling and bespoke approaches targeting the androgen receptor (AR) on 167 metastatic regions from 11 organs harvested post-mortem from 10 men who died from prostate cancer. We identify diverse and patient-unique alterations clustering around the AR in metastases from every patient with evidence of independent acquisition of related genomic changes within an individual and, in some patients, the co-existence of AR-neutral clones. Using the genomic boundaries of pan-autosome copy number changes, we confirm a common clone of origin across metastases and diagnostic biopsies, and identified in individual patients, clusters of metastases occupied by dominant clones with diverged autosomal copy number alterations. These autosome-defined clusters are characterized by cluster-specific AR gene architectures, and in two index cases are topologically more congruent than by chance (p-values 3.07 × 10-8 and 6.4 × 10-4). Integration with anatomical sites suggests patterns of spread and points of genomic divergence. Here, we show that copy number boundaries identify treatment-selected clones with putatively distinct lethal trajectories

    Advances in purification and separation of posttranslationally modified proteins

    Get PDF
    corecore