Supporting Information for:

NMR-Enhanced Crystallography Aids Open Metal-Organic Framework Discovery Using Solvent-Free Accelerated Aging

Christopher A. O'Keefe,^{*a*,†} Cristina Mottillo,^{*b*} Jogirdas Vainauskas,^{*b*} László Fábián,^{*c*} Tomislav Friščić^{*b*,*} and Robert W. Schurko^{*d*,*}

^a Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada, N9B 3P4;
 ^b Department of Chemistry, McGill University, Montreal, QC, Canada, H3A 0B8;
 ^c School of Pharmacy, University of East Anglia, Norwich, UK, NR4 7TJ

^{*d*} Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32308 [†]Current address: Department of Chemistry, University of Cambridge, Cambridge, UK, CB2 1EW

*Authors to whom correspondence should be addressed:

tomislav.friscic@mcgill.ca

rschurko@fsu.edu

Table of Contents	pg.
Table S1 : Optimized recycle delays for ¹ H MAS experiments.	4
Table S2: ¹ H ⁻¹³ C CP/MAS contact times and recycle delays.	4
Table S3: ¹ H- ¹¹¹ Cd CP contact times and recycle delays.	4
Table S4: ¹ H- ¹⁴ N BRAIN-CP/WURST-CPMG experimental parameters.	4
Table S5: Selected bond lengths in the Cd-imidazole compounds with known	5
structures.	
Table S6 : Selected bond angles in the Cd-imidazole compounds with known structures.	5
Figure S1 : ¹ H MAS ($v_{rot} = 16$ kHz) NMR spectra acquired at 9.4 T for (A) framework 2, (B) framework 3, and (C) compound 4.	6
Figure S2: ¹ H- ¹³ C CP/MAS ($v_{rot} = 10$ kHz) NMR spectra acquired at 9.4 T of (A) framework 2 , (B) framework 3 , and (C) compound 4 . The asterisks (*) denoted spinning sidebands.	6
Figure S3: Proposed ¹¹¹ Cd isotropic chemical shift ranges based on the compounds investigated herein and on studies conducted by Ellis <i>et al.</i> ^[17–24] and Baxter <i>et al.</i> ^[25]	7
Figure S4: Experimental ¹ H- ¹¹¹ Cd CP static spectrum of 2 (blue trace). Simulation of the entire spectrum is shown in the red trace. The simulation is deconvoluted into the individual sites: site I (green trace), site II (orange trace), and site III (black trace). The corresponding ¹¹¹ Cd CS tensor parameters can be found in Table 1 in the main text.	8
¹ H- ¹⁴ N BRAIN-CP/WURST-CPMG	9
Figure S5 : ¹ H- ¹⁴ N BRAIN-CP/WURST-CPMG spectra of H MeIm (green trace) and 1 (blue trace).	10
Figure S6: ¹ H- ¹⁴ N BRAIN-CP/WURST-CPMG spectrum of bulk HMeIm (blue trace) and simulation of the powder pattern (red trace). A deconvolution of the simulation into the two distinct powder patterns is also shown. The purple trace is the pattern corresponding to the N1 site ($C_Q = 1.95(5)$ MHz, $\eta_Q = 0.44(2)$) and the green trace is the pattern corresponding to the N2 site ($C_Q = 3.13(5)$ MHz, $\eta_Q = 0.21(2)$).	11
Figure S7: Experimental PXRD patterns of: a) commercial CdO; b) commercial H MeIm ; c) simulated PXRD pattern of yqt1 -Cd(MeIm) ₂ (CSD code GUPBOJ); experimental PXRD patterns of a 1:2 stoichiometric mixture of CdO and H MeIm after: d) pre-milling for 5 min at 30 Hz, and e) aging at 45 C and 100% RH for 12 days	12
Figure S8: Experimental PXRD patterns of: a) commercial CdO; b) commercial HMeIm; simulated PXRD patterns of: c) dia -Cd(MeIm) ₂ ·HMeIm (1), and d) yqt1 -Cd(MeIm) ₂ (CSD code GUPBOJ) (3); experimental PXRD patterns of a 1:2 stoichiometric mixture of CdO and HMeIm in the presence of NH ₄ NO ₃ after: e) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: f) 1 day, g) 7 days, and h) 7 months; i) sample g) after heating to 200 °C; experimental PXRD patterns of a 1:6 stoichiometric mixture of CdO and HMeIm in the presence of NH ₄ NO ₃ after: j) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: k) 3 days, and l) 7 days; m) experimental PXRD patterns of a 1:3 stoichiometric mixture of CdO and HMeIm in the presence of NH ₄ NO ₃ after: j) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: k) 3 days, and l) 7 days; m) experimental PXRD patterns of a 1:3 stoichiometric mixture of CdO and HMeIm in the presence of NH ₄ NO ₃ after aging at 45 °C and 100% RH for 4 days.	13
Figure S9: Experimental PXRD patterns of: a) commercial CdO; b) commercial	14
HMeIm; simulated PXRD patterns of: c) dia-Cd(MeIm) ₂ ·HMeIm (1), and d) yqt1-	

Cd(MeIm) ₂ (CSD code GUPBOJ) (3); experimental PXRD patterns of a 1:2	
stoichiometric mixture of CdO and HMeIm in the presence of (NH ₄) ₂ SO ₄ after: e) pre-	
milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: f) 1 day, and g) 7 days;	
experimental PXRD patterns of a 1:3 stoichiometric mixture of CdO and HMeIm in the	
presence of (NH ₄) ₂ SO ₄ after: h) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100%	
RH for: i) 4 days, and j) 6 days; experimental PXRD patterns of a 1:2 stoichiometric	
mixture of CdO and HMeIm in the presence of HCafHSO ₄ after: k) pre-milling for 5	
min at 30 Hz; aging at 45 °C and 100% RH for: 1) 1 day, and m) 7 days.	
Figure S10: Experimental PXRD patterns of: a) commercial CdO; b) commercial	15
HMeIm; c) simulated, and d) experimental PXRD pattern of dia-Cd(MeIm) ₂ ·HMeIm	
(1); e) simulated, and f) experimental PXRD pattern of yqt1-Cd(MeIm) ₂ (CSD code	
GUPBOJ) (3); g) simulated, and h) experimental PXRD pattern of dia-Cd(Im) ₂ (CSD	
code BAYQAU) (2); i) simulated, and j) experimental PXRD pattern of	
$Cd(HIm)_6CO_3 \cdot 3H_2O$ (CSD code IMIDCP01) (4).	
Figure S11: TGA thermogram of yqt1-Cd(Im) ₂ (CSD code GUPBOJ) (3) in dynamic	16
atmosphere of air. The sample was made by aging CdO and HMeIm in a 1:2 ratio at 45	
°C and 100% RH in the presence of (HCaf)HSO ₄ .	
Figure S12: TGA thermogram of dia-Cd(MeIm) ₂ ·HMeIm (1) in dynamic atmosphere	16
of N ₂ . The first step corresponds to the loss of one molecule of unbound H MeIm per	
Cd^{2+} , which accounts for a theoretical value of 23.03% w/w of 1 (experimental value is	
23.21%).	
Figure S13: TGA thermogram of dia-Cd(Im) ₂ (CSD code BAYQAU) (2) in dynamic	17
atmosphere of air.	
Figure S14: TGA thermogram of Cd(HIm) ₆ ·3H ₂ O (CSD code IMCDCP01) (4) in	17
dynamic atmosphere of air.	
Figure S15: Fourier-transform infrared (FTIR-ATR) spectra of: a) commercial 2-	18
methylimidazole; b) yqt1-Cd(MeIm) ₂ (CSD code GUPBOJ) (3); and c) dia-	
Cd(MeIm) ₂ ·H MeIm .	
Figure S16 : The coordination environment of the Cd atoms in dia -Cd[Im] ₂ (2).	19
Figure S17: Coordination environment about (A) the Cd1 site, (B) the Cd2 site and	19
atom labeling in the yqt1-Cd[MeIm] ₂ (3) framework. There is an apparent positional	
disorder of one of the MeIm– ligands at the Cd1 site.	
Figure S18: Coordination environment about the Cd atom and atom labelling in the	20
8	20
$Cd[Im]_6CO_3 \cdot 3H_2O(4)$ molecule.	
References	21

Compound	Recycle Delay (s)
1	5
2	5
3	5
4	7.5

Table S1: Optimized recycle delays for ¹H MAS experiments

 Table S2: ¹H⁻¹³C CP/MAS contact times and recycle delays

Compound	Contact Time (ms)	Recycle Delay (s)
1	1	5
2	10	5
3	2	5
4	2	7.5
HMeIm	15	60

 Table S3: ¹H-¹¹¹Cd CP contact times and recycle delays

Compound	Contact Time (ms)	Recycle Delay (s)
1	8	5
2	17	5
3	7	5
4	5	7.5

 Table S4: 1H-14N BRAIN-CP/WURST-CPMG experimental parameters

Compound	Recycle Delay (s)	Contact Time (ms)	# of echoes	# of subspectra
1	1	20	40	15
HMeIm	30	20	80	26

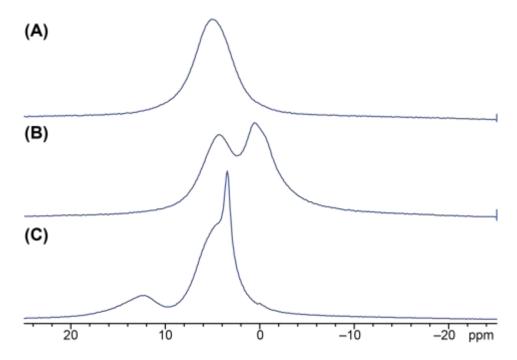
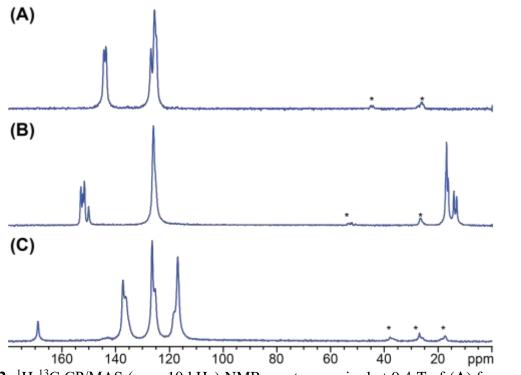
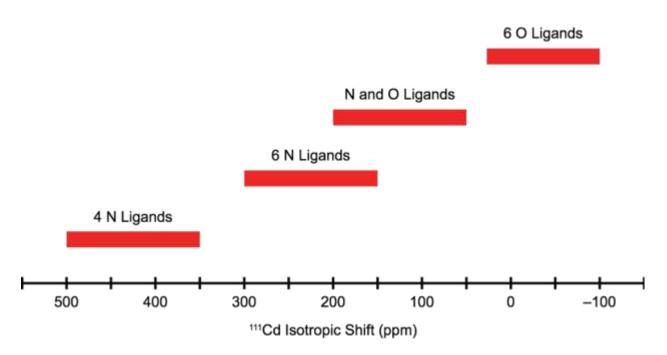
Compound	Bond	Length (Å)
2	Cd-N1	2.215
	Cd-N2	2.228
	Cd-N3	2.260
	Cd-N4	2.226
3	Cd1-N2	2.203
	Cd1-N3	2.198
	Cd1-N5	2.199
	Cd1-N6	2.258
	Cd1-N7	2.167
	Cd2-N1	2.201
	Cd2-N2	2.209
4	Cd-N1	2.401

Table S5: Selected bond lengths in the Cd-imidazole compounds with known structures

Table S6: Selected bond angles in the Cd-imidazole compounds with known structures

Compound	Bond	Angle (°)
2	N1-Cd-N2	113.5
	N1-Cd-N3	115.2
	N1-Cd-N4	112.2
	N2-Cd-N3	96.66
	N2-Cd-N4	112.9
	N3-Cd-N4	105.3
3	N2-Cd1-N3	115.3
	N2-Cd1-N5	115.6
	N2-Cd1-N6	80.97
	N2-Cd1-N7	107.4
	N3-Cd1-N5	109.9
	N3-Cd1-N6	126.1
	N3-Cd1-N7	102.0
	N5-Cd1-N6	106.5
	N5-Cd1-N7	105.1
	N6-Cd1-N7	29.33
	N1-Cd2-N2	106.8
	N1-Cd2-N2	117.4
4	N1-Cd-N1	89.769
	N1-Cd-N1	90.231

2. Solid-state NMR data

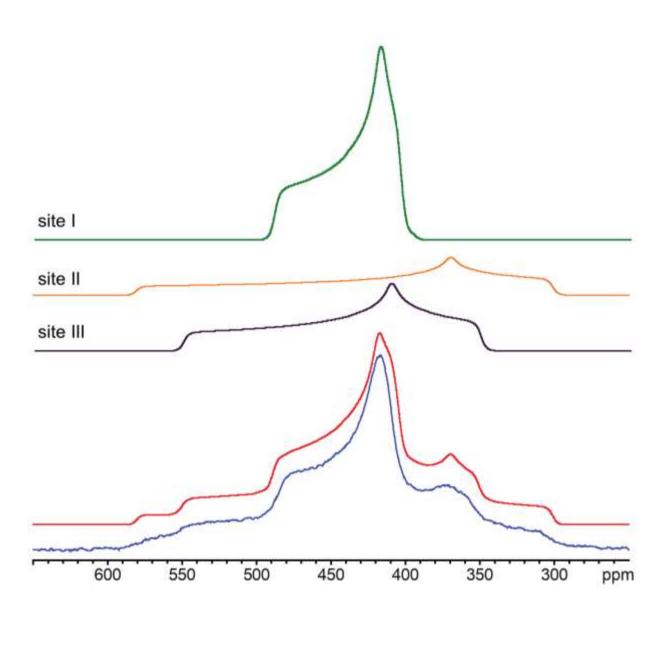
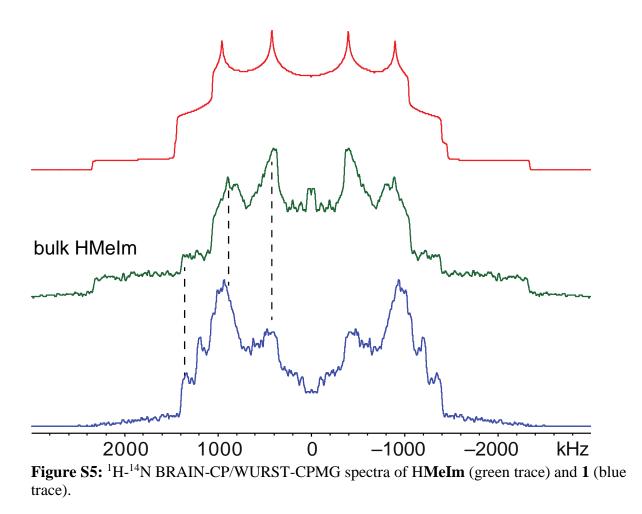

Figure S1: ¹H MAS ($v_{rot} = 16$ kHz) NMR spectra acquired at 9.4 T for (A) framework 2, (B) framework 3, and (C) compound 4.

Figure S2: ${}^{1}\text{H}{}^{-13}\text{C}$ CP/MAS ($v_{rot} = 10$ kHz) NMR spectra acquired at 9.4 T of (A) framework 2, (B) framework 3, and (C) compound 4. The asterisks (*) denoted spinning sidebands.


Figure S3: Proposed ¹¹¹Cd isotropic chemical shift ranges based on the compounds investigated herein and on studies conducted by Ellis *et al.*^[17–24] and Baxter *et al.*^[25]

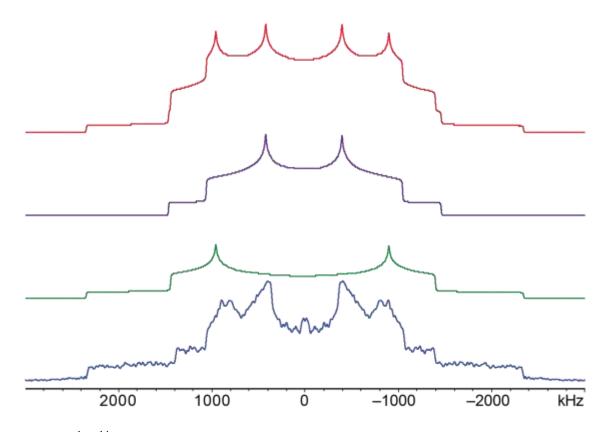
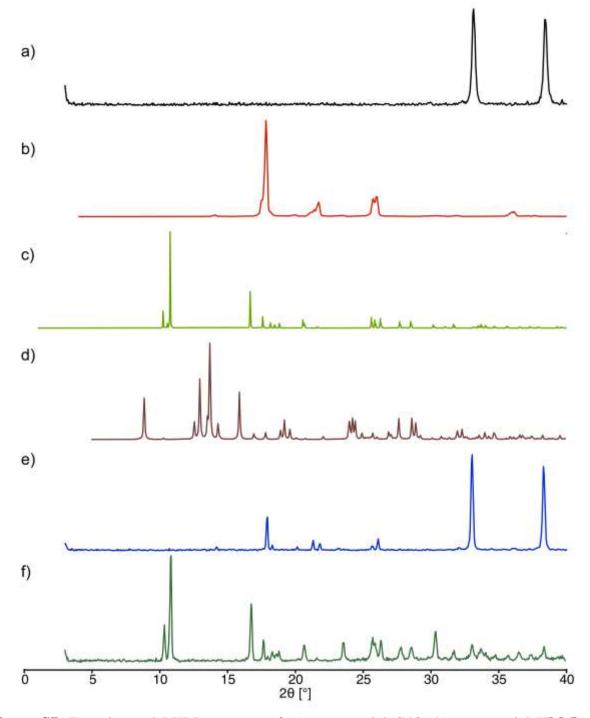


Figure S4: Experimental ¹H-¹¹¹Cd CP static spectrum of **2** (blue trace). Simulation of the entire spectrum is shown in the red trace. The simulation is deconvoluted into the individual sites: site I (green trace), site II (orange trace), and site III (black trace). The corresponding ¹¹¹Cd CS tensor parameters can be found in **Table 1** in the main text.

¹H-¹⁴N BRAIN-CP/WURST-CPMG


The ¹H-¹⁴N static CP NMR spectra for H**MeIm** and **1** are shown in **Figure S5**. Due to the enormous breadth (ca. 4.5 MHz) of ¹⁴N patterns, it was necessary to use the broadband adiabatic inversion CP (BRAIN-CP) for polarization transfer,^[3,4] and the wideband uniform-rate smoothtruncation-CPMG (WURST-CPMG) pulse sequence for broadband refocusing.^[5,6,26] The spectrum of bulk HMeIm reveals two overlapping Pake-like doublet patterns, corresponding to two distinct nitrogen environments (Figure S6). The narrower pattern ($C_Q = 1.95(5)$ MHz, $\eta_Q =$ 0.44(2)) is assigned to the nitrogen of the N-H group and the broader pattern ($C_Q = 3.13(5)$, $\eta_Q =$ (0.21(2)) to the non-protonated nitrogen atom. The spectrum of **1** exhibits several broad features resulting from multiple overlapping Pake doublet patterns. Some of the features (i.e., horns, shoulders, and feet) in the spectrum of 1 occur at the same frequency as those for bulk HMeIm, consistent with HMeIm inclusion in the MOF. Furthermore, discontinuities in the spectrum of 1 are not as well defined as those for bulk HMeIm, suggesting that guest molecules are disordered in the former. Finally, there are discontinuities in the ¹⁴N spectrum of **1** that do not match those in the spectrum of HMeIm; these are assigned to nitrogen atoms of MeIm⁻ ligands forming the framework of 1.

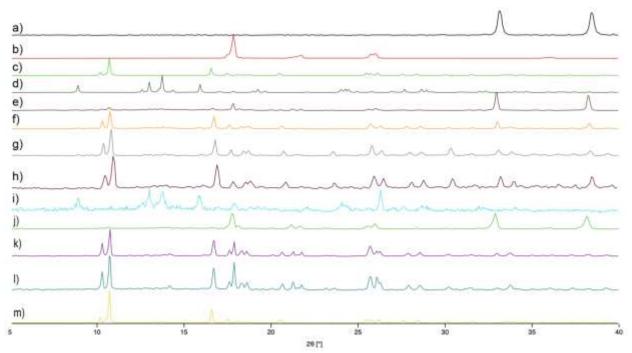
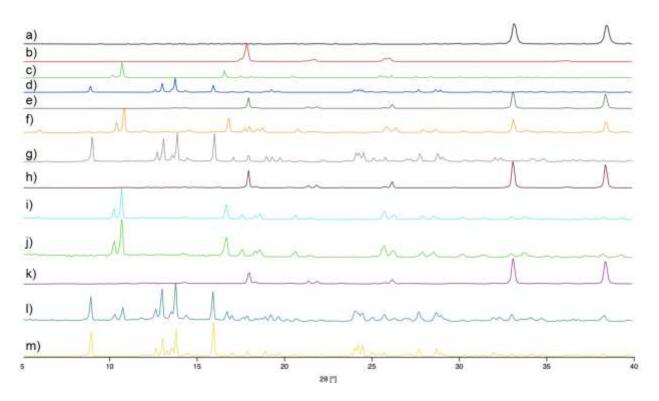


Figure S6: ¹H-¹⁴N BRAIN-CP/WURST-CPMG spectrum of bulk **HMeIm** (blue trace) and simulation of the powder pattern (red trace). A deconvolution of the simulation into the two distinct powder patterns is also shown. The purple trace is the pattern corresponding to the N1 site ($C_Q = 1.95(5)$ MHz, $\eta_Q = 0.44(2)$) and the green trace is the pattern corresponding to the N2 site ($C_Q = 3.13(5)$ MHz, $\eta_Q = 0.21(2)$).


3. Powder X-ray diffraction data

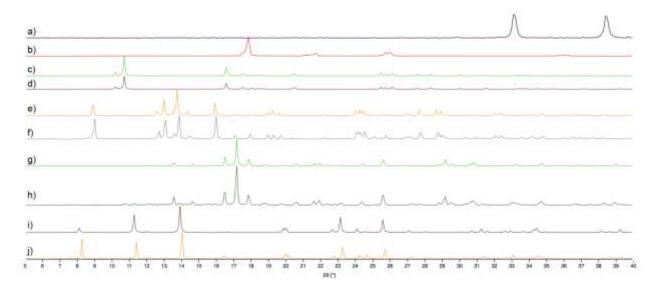

Figure S7: Experimental PXRD patterns of: a) commercial CdO; b) commercial H**MeIm**; c) simulated PXRD pattern for herein reported compound **1**; d) simulated PXRD pattern of **yqt1**-Cd(**MeIm**)₂ (CSD code GUPBOJ) (**3**); experimental PXRD patterns of a 1:2 stoichiometric mixture of CdO and H**MeIm** after: e) pre-milling for 5 min at 30 Hz, and f) aging at 45 C and 100% RH for 12 days.

Figure S8: Experimental PXRD patterns of: a) commercial CdO; b) commercial H**MeIm**; simulated PXRD patterns of: c) **dia**-Cd(**MeIm**)₂·H**MeIm** (1), and d) **yqt1**-Cd(**MeIm**)₂ (CSD code GUPBOJ) (3); experimental PXRD patterns of a 1:2 stoichiometric mixture of CdO and H**MeIm** in the presence of NH₄NO₃ after: e) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: f) 1 day, g) 7 days, and h) 7 months; i) sample g) after heating to 200 °C; experimental PXRD patterns of a 1:6 stoichiometric mixture of CdO and H**MeIm** in the presence of NH₄NO₃ after: j) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: k) 3 days, and l) 7 days; m) experimental PXRD patterns of a 1:3 stoichiometric mixture of CdO and H**MeIm** in the presence of NH₄NO₃ after aging at 45 °C and 100% RH for: k) 3 days, and l) 7 days; m)

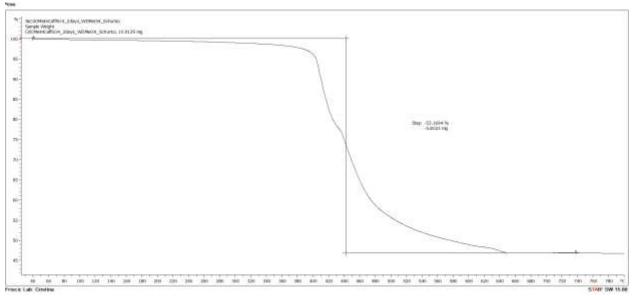


Figure S9: Experimental PXRD patterns of: a) commercial CdO; b) commercial H**MeIm**; simulated PXRD patterns of: c) **dia**-Cd(**MeIm**)₂·H**MeIm** (1), and d) **yqt1**-Cd(**MeIm**)₂ (CSD code GUPBOJ) (3); experimental PXRD patterns of a 1:2 stoichiometric mixture of CdO and H**MeIm** in the presence of (NH₄)₂SO₄ after: e) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: f) 1 day, and g) 7 days; experimental PXRD patterns of a 1:3 stoichiometric mixture of CdO and H**MeIm** in the presence of (NH₄)SO₄ after: h) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: i) 4 days, and j) 6 days; experimental PXRD patterns of a 1:2 stoichiometric mixture of a 1:2 stoichiometric mixture of CdO and H**MeIm** in the presence of (NH₄)SO₄ after: h) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: i) 4 days, and j) 6 days; experimental PXRD patterns of a 1:2 stoichiometric mixture of CdO and H**MeIm** in the presence of H**Caf**HSO₄ after: k) pre-milling for 5 min at 30 Hz; aging at 45 °C and 100% RH for: l) 1 day, and m) 7 days.

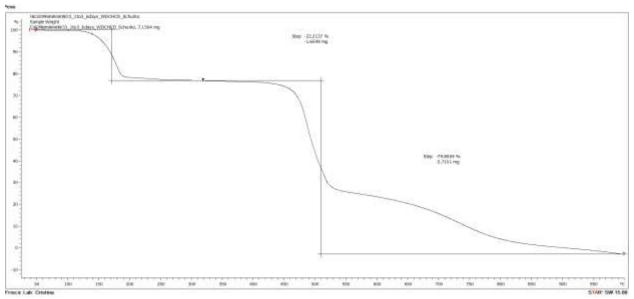


Figure S10: Experimental PXRD patterns of: a) commercial CdO; b) commercial H**MeIm**; c) simulated, and d) experimental PXRD pattern of **dia**-Cd(**MeIm**)₂·H**MeIm** (1); e) simulated, and f) experimental PXRD pattern of **yqt1**-Cd(**MeIm**)₂ (CSD code GUPBOJ) (3); g) simulated, and h) experimental PXRD pattern of **dia**-Cd(**Im**)₂ (CSD code BAYQAU) (2); i) simulated, and j) experimental PXRD pattern of Cd(H**Im**)₆CO₃·3H₂O (CSD code IMIDCPO1) (4).

4. Thermogravimetric analysis

Figure S11: TGA thermogram of **yqt1**-Cd(**Im**)₂ (CSD code GUPBOJ) (**3**) in a dynamic atmosphere of air. The sample was made by aging CdO and H**MeIm** in a 1:2 ratio at 45 °C and 100% RH in the presence of (H**Caf**)HSO₄.

Figure S12: TGA thermogram of **dia**-Cd(**MeIm**)₂·H**MeIm** (1) in a dynamic atmosphere of N₂. The first step corresponds to the loss of one molecule of unbound H**MeIm** per Cd²⁺, which accounts for a theoretical value of 23.03% w/w of 1 (experimental value is 23.21%).

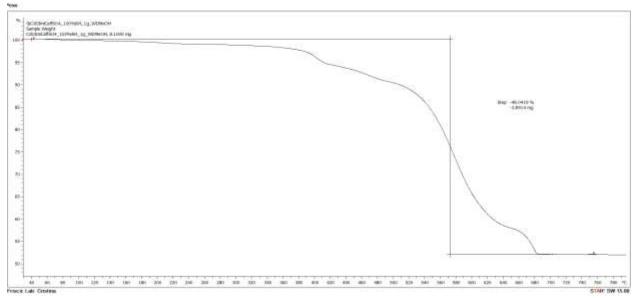
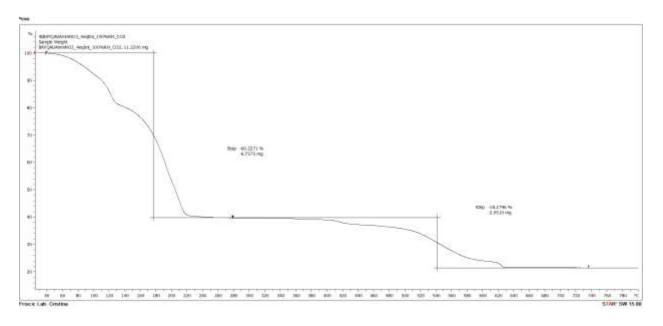
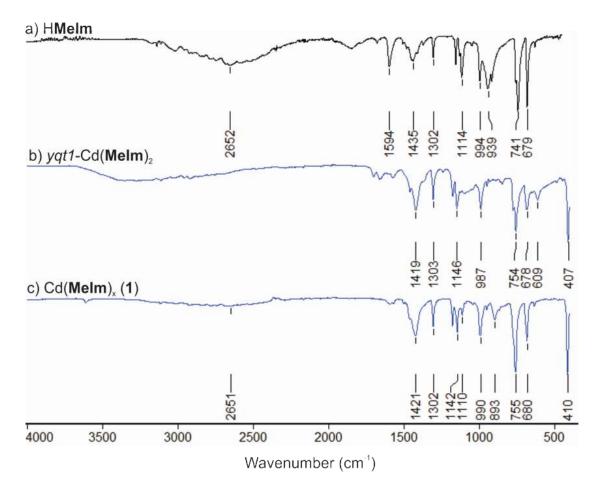




Figure S13: TGA thermogram of dia-Cd(Im)₂ (CSD code BAYQAU) (2) in a dynamic atmosphere of air.

Figure S14: TGA thermogram of $Cd(HIm)_6 \cdot 3H_2O$ (CSD code IMCDCP01) (4) in a dynamic atmosphere of air.

4. Fourier-transform infrared (FTIR-ATR) spectroscopy

Figure S15: Fourier-transform infrared (FTIR-ATR) spectra of: a) commercial H**MeIm**; b) **yqt1**-Cd(**MeIm**)₂ (CCDC code GUPBOJ) (**3**); and c) **dia**-Cd(**MeIm**)₂·H**MeIm** (**1**).

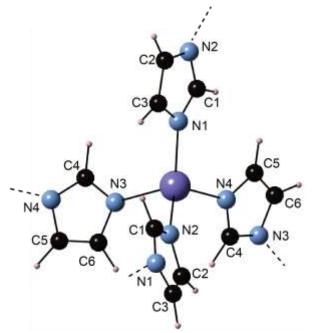


Figure S16: The coordination environment of the Cd atoms in dia-Cd[Im]₂(2).

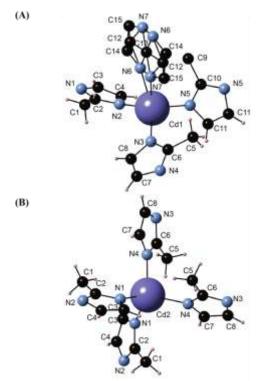


Figure S17: Coordination environment about (A) the Cd1 site, (B) the Cd2 site and atom labeling in the yqt1-Cd[MeIm]₂(3) framework. There is an apparent positional disorder of one of the MeIm⁻ligands at the Cd1 site.

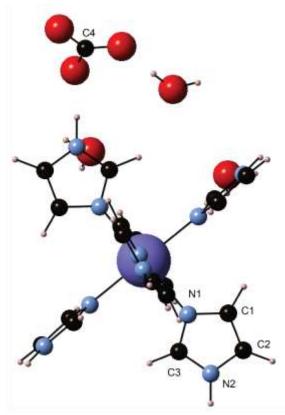


Figure S18: Coordination environment about the Cd atom and atom labelling in the $Cd[Im]_6CO_3 \cdot 3H_2O$ (4) molecule.

References:

- [1] C. Mottillo, Y. Lu, M.-H. Pham, M. J. Cliffe, T.-O. Do, T. Friščić, *Green Chem.* 2013, 15, 2121.
- [2] O. B. Peersen, X. Wu, I. Kustanovich, S. O. Smith, J. Magn. Reson. Ser. A 1993, 104, 334–339.
- [3] K. J. Harris, A. Lupulescu, B. E. G. Lucier, L. Frydman, R. W. Schurko, *J. Magn. Reson.* 2012, 224, 38–47.
- [4] K. J. Harris, S. L. Veinberg, C. R. Mireault, A. Lupulescu, L. Frydman, R. W. Schurko, *Chem. Eur. J.* 2013, 19, 16469–16475.
- [5] L. A. O'Dell, R. W. Schurko, Chem. Phys. Lett. 2008, 464, 117–130.
- [6] L. A. O'Dell, A. J. Rossini, R. W. Schurko, Chem. Phys. Lett. 2009, 468, 330–335.
- [7] D. Massiot, I. Farnan, N. Gautier, D. Trumeau, A. Trokiner, J. P. Coutures, *Solid State Nucl. Magn. Reson.* 1995, *4*, 241–8.
- [8] A. Medek, V. Frydman, L. Frydman, J. Phys. Chem. A 1999, 103, 4830–4835.
- [9] J. A. Tang, J. D. Masuda, T. J. Boyle, R. W. Schurko, *ChemPhysChem* 2006, 7, 117–30.
- [10] S. L. Veinberg, Z. W. Friedl, K. J. Harris, L. A. O'Dell, R. W. Schurko, *CrystEngComm* 2015, *17*, 5225–5236.
- S. L. Veinberg, Z. W. Friedl, A. W. Lindquist, B. Kispal, K. J. Harris, L. A. O'Dell, R. W. Schurko, *ChemPhysChem* 2016, 17, 4011–4027.
- S. L. Veinberg, K. E. Johnston, M. J. Jaroszewicz, B. M. Kispal, C. R. Mireault, T.
 Kobayashi, M. Pruski, R. W. Schurko, *Phys. Chem. Chem. Phys.* 2016, *18*, 17713–17730.
- [13] A. Le Bail, *Powder Diffr.* **2004**, *19*, 249–254.
- [14] W. I. F. David, K. Shankland, J. van de Streek, E. Pidcock, W. D. S. Motherwell, J. C.

Cole, J. Appl. Crystallogr. 2006, 39, 910–915.

- [15] A. C. Larson, R. Von Dreele, General Structure Analysis System (GSAS), 2004.
- [16] B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210–213.
- [17] H. J. Jakobsen, P. D. Ellis, R. R. Inners, C. F. Jensen, J. Am. Chem. Soc. 1982, 104, 7442– 7452.
- [18] M. A. Kennedy, P. D. Ellis, H. J. Jakobsen, *Inorg. Chem.* **1990**, *29*, 550–552.
- [19] M. A. Kennedy, J. L. Sessler, T. Murai, P. D. Ellis, H. J. Jakobsen, *Inorg. Chem.* 1990, 29, 1050–1054.
- [20] E. Rivera, M. A. Kennedy, R. D. Adams, P. D. Ellis, J. Am. Chem. Soc. 1990, 112, 1400–1407.
- [21] E. Rivera, P. D. Ellis, *Inorg. Chem.* **1992**, *11*, 2096–2103.
- [22] A. S. Lipton, S. S. Mason, D. L. Reger, P. D. Ellis, J. Am. Chem. Soc. 1994, 116, 10182– 10187.
- [23] D. L. Reger, S. M. Myers, S. S. Mason, D. J. Darensbourg, M. W. Holtcamp, J. H.
 Reibenspies, A. S. Lipton, P. D. Ellis, *J. Am. Chem. Soc.* **1995**, *117*, 10998–11005.
- [24] A. S. Lipton, S. S. Mason, S. M. Myers, D. L. Reger, P. D. Ellis, **1996**, *2*, 7111–7117.
- [25] E. F. Baxter, T. D. Bennett, A. B. Cairns, N. J. Brownbill, A. L. Goodwin, D. A. Keen, P.
 A. Chater, F. Blanc, A. K. Cheetham, *Dalt. Trans.* 2016, 45, 4258–4268.
- [26] L. A. O'Dell, Solid State Nucl. Magn. Reson. 2013, 55–56, 28–41.