10 research outputs found

    Tyrosine Kinase Inhibitor Resistance in Patients with Chronic Myeloid Leukemia: A 10-Year Study of BCR-ABL Gene Mutation Profile in Russia (2006–2016)

    Get PDF
    Background. Kinase domain mutations of BCR-ABL gene is the most common cause of tyrosine kinase inhibitor resistance. Aim. To present the data on prognostic value of BCR-ABL mutation burden in Russian patients over the last 10 years. Materials & Methods. The study included 1885 chronic myeloid leukemia (CML) patients with tyrosine kinase inhibitor resistance who were followed up from 2006 to 2016. BCR-ABL point mutations in mRNA samples were analyzed by means of polymerase chain reaction and subsequent Sanger sequencing. Results. In 1257 CML patients with signs of tyrosine kinase inhibitor resistance BCR-ABL expression level was > 1 %. BCR–ABL mutations were detected in 31.8 % of patients. Total mutation count was 467 (70 mutation types). Total count of patients with mutation-associated tyrosine kinase inhibitor resistance decreased from 36.6 % (2006–2008) to 24.95 % (2013–2016) and to marked decrease of 23.12 % in 2014. Detection rate of imatinib-resistant mutations and F359V mutation was shown to decrease within the period from 2010–2011 to 2014–2015. F317L level, which is responsible for dasatinib resistance, considerably increased in 2015. T315I frequency was the highest in 2014, afterwards it was gradually decreasing. Mutation-associated resistance rates varied by region of the Russian Federation. Conclusion. The analysis of trends of mutation incidence in patients with CML can be of extreme significance in long-term prognosis of resistance development and in improvement of treatment planning

    Prognostic Value of the PRAME Gene Expression in T-Cell Lymphoproliferative Disorders

    Get PDF
    Background. T-cell lymphomas (T-CL) represent a heterogeneous group of malignant lymphoproliferative disorders characterized by unfavorable prognosis. The cancer-testis PRAME gene is notable for its spontaneous expression in transformed cells as observed in solid tumors, B-cell lymphoproliferative and chronic myeloproliferative diseases. Activity and clinical significance of PRAME in T-CL was not studied before, which determines the relevance and provides ground for the present trial. Aim. To assess the clinical significance of the PRAME gene expression in T-CL. Materials & Methods. PRAME gene expression level was measured in samples of lymph nodes, blood, and bone marrow from 35 T-CL patients. Among them 3 patients received allogeneic hematopoietic stem cell transplantation, and 6 patients received autologous hematopoietic stem cell transplantation. A correlation was established between the PRAME expression in bone marrow and peripheral blood with morphological markers of disseminated disease with bone marrow lesions and leukemic blood. PRAME expression level was correlated with survival parameters and tumor proliferative activity (Ki-67). Results. PRAME activity was observed in 21 (60 %) patients. PRAME hyperexpression is associated with advanced stages of disease (p = 0.0734), bone marrow lesions (p = 0.0289), leukemic blood (p = 0.0187), worsening of the overall survival (OS) (p = 0.0787) and event-free survival (EFS) (p = 0.7185), also after hematopoietic stem cell transplantation (p = 0.2661 for OS and p = 0.0452 for EFS), and with a high Ki-67 expression level (p = 0.0155). Conclusion. PRAME expression in T-CL is often observed and related with unfavorable clinical prognosis

    Expression of the BCR-ABL1 Gene in Patients with Chronic Myeloproliferative Diseases with Signs of Progression

    Get PDF
    Background. The V617F mutation of JAK2 is known to manifest in Ph-negative chronic myeloproliferative diseases (cMPD), such as polycythemia vera, thrombocythemia, and myelofibrosis. These diseases not infrequently advance into more aggressive forms up to acute leukemia. As the progression mechanism is still unknown, its study retains a high priority. JAK2 carrying the V617F mutation is believed to cause constant activation of V(D)J recombinase in myeloid tumor cells in cMPD patients. Aberrant activation of V(D)J recombinase in tumor cells in cMPD patients can lead to t(9;22)(q34;q11) chromosomal rearrangement. Aim. To study the expression of BCR-ABL1 resulting from translocation t(9;22)(q34;q11) in cMPD patients at the progression stage in order to test the suggested hypothesis. Materials & Methods. The BCR–ABL1 expression was assessed in peripheral blood granulocytes in cMPD patients by real-time PCR. The JAK2 V617F mutation was identified by quantitative allele-specific PCR. The JAK2 exon 12 mutations were determined using Sanger direct sequencing of PCR products. Results. The BCR-ABL1 expression was discovered in 29 % of patients with cMPD progression. The BCR-ABL1 expression in these patients correlated with hepatosplenomegaly and hyperleukocytosis. Conclusion. In a significant proportion of cMPD patients the disease progression can be associated with activation of the BCR-ABL expression

    GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 2014

    Get PDF
    G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future

    GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 2014.

    Get PDF
    G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future

    Geomicrobiology of Iron

    No full text

    Search for heavy charged long-lived particles in proton-proton collisions at root s=13 TeV using an ionisation measurement with the ATLAS detector

    Get PDF
    This Letter presents a search for heavy charged long-lived particles produced in proton–proton collisions at √s = 13 TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1 fb−1 collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and gluino masses are set, assuming the gluino always decays to two quarks and a 100 GeV stable neutralino. R-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable R-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV
    corecore