172 research outputs found

    Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High-Speed Solar Wind Stream Observed in September 2014

    Get PDF
    Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground- and space-based observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by phase space density calculations for this global recovery period

    Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction

    Get PDF
    Recently, important efforts have been dedicated to the realization of a fascinating class of new photonic materials or metamaterials, known as photonic quasicrystals (PQCs), in which the lack of the translational symmetry is compensated by rotational symmetries not achievable by the conventional periodic crystals. As ever, more advanced functionality is demanded and one strategy is the introduction of non-linear and/or active functionality in photonic materials. In this view, core/shell nanorods (NRs) are a promising active material for light-emitting applications. In this article a two-dimensional (2D) hybrid a 2D octagonal PQC which consists of air rods in an organic/inorganic nanocomposite is proposed and experimentally demonstrated. The nanocomposite was prepared by incorporating CdSe/CdS core/shell NRs into a polymer matrix. The PQC was realized by electron beam lithography (EBL) technique. Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm. The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Italian patients with hemoglobinopathies exhibit a 5-fold increase in age-standardized lethality due to SARS-CoV-2 infection.

    Get PDF
    Since the beginning of the COVID-19 pandemic, concerns have been expressed worldwide for patients with hemoglobinopathies and their vulnerability to SARS-CoV-2 infection. Data from Lebanon confirmed a role of underlying comorbidities on COVID-19 severity, but no deaths among a cohort of thalassemia patients.1 Patients with sickle cell disease (SCD) displayed a broad range of severity after SARS-CoV-2 infection, spanning from a favorable outcome unless pre-existing comorbidities (UK cohort)2 to high case mortality in US.3 History of pain, heart, lung, and renal comorbidities was identified as risk factors of worse COVID-19 outcomes by the US SECURE-SCD Registry.4 While Italy experienced a death rate in the general population among the highest in the world, preliminary data from the first wave of the pandemic showed a lower than expected number of infected thalassemia patients (updated up to April 10, 2020), likely due to earlier and more vigilant self-isolation compared to the general population.

    Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control

    Get PDF
    Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo

    Preference for novel faces in male infant monkeys predicts cerebrospinal fluid oxytocin concentrations later in life

    Get PDF
    The ability to recognize individuals is a critical skill acquired early in life for group living species. In primates, individual recognition occurs predominantly through face discrimination. Despite the essential adaptive value of this ability, robust individual differences in conspecific face recognition exist, yet its associated biology remains unknown. Although pharmacological administration of oxytocin has implicated this neuropeptide in face perception and social memory, no prior research has tested the relationship between individual differences in face recognition and endogenous oxytocin concentrations. Here we show in a male rhesus monkey cohort (N = 60) that infant performance in a task used to determine face recognition ability (specifically, the ability of animals to show a preference for a novel face) robustly predicts cerebrospinal fluid, but not blood, oxytocin concentrations up to five years after behavioural assessment. These results argue that central oxytocin biology may be related to individual face perceptual abilities necessary for group living, and that these differences are stable traits

    Cardiotoxicity of Freon among refrigeration services workers: comparative cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Freon includes a number of gaseous, colorless chlorofluorocarbons. Although freon is generally considered to be a fluorocarbon of relatively low toxicity; significantly detrimental effects may occur upon over exposure. The purpose of the present study is to investigate whether occupational exposure to fluorocarbons can induce arterial hypertension, myocardial ischemia, cardiac arrhythmias, elevated levels of plasma lipids and renal dysfunction.</p> <p>Methods</p> <p>This comparative cross-sectional study was conducted at the cardiology clinic of the Suez Canal Authority Hospital (Egypt). The study included 23 apparently healthy male workers at the refrigeration services workshop who were exposed to fluorocarbons (FC 12 and FC 22) and 23 likewise apparently healthy male workers (unexposed), the control group. All the participants were interviewed using a pre-composed questionnaire and were subjected to a clinical examination and relevant laboratory investigations.</p> <p>Results</p> <p>There were no significant statistical differences between the groups studied regarding symptoms suggesting arterial hypertension and renal affection, although a significantly higher percentage of the studied refrigeration services workers had symptoms of arrhythmias. None of the workers had symptoms suggesting coronary artery disease. Clinical examination revealed that the refrigeration services workers had a significantly higher mean pulse rate compared to the controls, though no significant statistical differences were found in arterial blood pressure measurements between the two study groups. Exercise stress testing of the workers studied revealed normal heart reaction to the increased need for oxygen, while sinus tachycardia was detected in all the participants. The results of Holter monitoring revealed significant differences within subject and group regarding the number of abnormal beats detected throughout the day of monitoring (p < 0.001). There were no significant differences detected in the average heart rate during the monitoring period within subject or group. Most laboratory investigations revealed absence of significant statistical differences for lipid profile markers, serum electrolyte levels and glomerular lesion markers between the groups except for cholesterol and urinary β2-microglobulin (tubular lesion markers) levels which were significantly elevated in freon exposed workers.</p> <p>Conclusions</p> <p>Unprotected occupational exposure to chlorofluorocarbons can induce cardiotoxicity in the form of cardiac arrhythmias. The role of chlorofluorocarbons in inducing arterial hypertension and coronary artery diseases is unclear, although significantly elevated serum cholesterol and urinary β2-microglobulin levels raise a concern.</p

    Elevated levels of β-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro

    Get PDF
    BACKGROUND: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in the development of scar-like, collagen-rich disease cords within specific palmar fascia bands. Although the molecular pathology of DD is unknown, recent evidence suggests that β-catenin may play a role. In this study, collagen matrix cultures of primary disease fibroblasts show enhanced contraction and isometric tension-dependent changes in β-catenin and fibronectin levels. METHODS: Western blots of β-catenin and fibronectin levels were determined for control and disease primary cell cultures grown within stressed- and attached-collagen matrices. Collagen contraction was quantified, and immunocytochemistry analysis of filamentous actin performed. RESULTS: Disease cells exhibited enhanced collagen contraction activity compared to control cells. Alterations in isometric tension of collagen matrices triggered dramatic changes in β-catenin and fibronectin levels, including a transient increase in β-catenin levels within disease cells, while fibronectin levels steadily decreased to levels below those seen in normal cell cultures. In contrast, both fibronectin and β-catenin levels increased in attached collagen-matrix cultures of disease cells, while control cultures showed only increases in fibronectin levels. Immunocytochemistry analysis also revealed extensive filamentous actin networks in disease cells, and enhanced attachment and spreading of disease cell in collagen matrices. CONCLUSION: Three-dimensional collagen matrix cultures of primary disease cell lines are more contractile and express a more extensive filamentous actin network than patient-matched control cultures. The elevated levels of β-catenin and Fn seen in collagen matrix cultures of disease fibroblasts can be regulated by changes in isometric tension
    corecore