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Preference for novel faces in 
male infant monkeys predicts 
cerebrospinal fluid oxytocin 
concentrations later in life
Jesus E. Madrid1,2, Ozge Oztan2, Valentina Sclafani3,4, Laura A. Del Rosso3, Laura A. Calonder3, 
Katie Chun3, John P. Capitanio3,5, Joseph P. Garner2,6 & Karen J. Parker2,3

The ability to recognize individuals is a critical skill acquired early in life for group living species. In 
primates, individual recognition occurs predominantly through face discrimination. Despite the 
essential adaptive value of this ability, robust individual differences in conspecific face recognition 
exist, yet its associated biology remains unknown. Although pharmacological administration of 
oxytocin has implicated this neuropeptide in face perception and social memory, no prior research has 
tested the relationship between individual differences in face recognition and endogenous oxytocin 
concentrations. Here we show in a male rhesus monkey cohort (N = 60) that infant performance in a 
task used to determine face recognition ability (specifically, the ability of animals to show a preference 
for a novel face) robustly predicts cerebrospinal fluid, but not blood, oxytocin concentrations up to five 
years after behavioural assessment. These results argue that central oxytocin biology may be related 
to individual face perceptual abilities necessary for group living, and that these differences are stable 
traits.

A fundamental challenge confronted by individuals living in social groups is the ability to recognize others. In 
visually-dependent primate species characterized by extensive social interactions, the ability to recognize faces 
is important for individual identification and is necessary for the development of preferential relationships that 
enhance survival1–7. Despite the crucial role of face recognition ability in primate societies, there is nevertheless 
within-species variation in the ability to recognize faces, which is evident from an early age8,9, and is associated 
with long-lasting differences in social development10.

Recent research has begun to elucidate the neurobiological mechanisms underlying the ability to recognize 
faces11,12. One neurotransmitter thought to mediate face processing in primates is oxytocin (OT), which has an 
evolutionarily-conserved involvement in the regulation of social recognition, social reward, social bond forma-
tion, and parental care across taxa13–16. More specifically, OT administration in human and non-human primates 
increases attention to the eye region17 and to faces18–20, by changing an individual’s gaze fixation and saccade pat-
terns21,22. These effects, in turn, may underlie the consistently observed improvements in face memory following 
OT administration23–27.

The majority of research investigating the role of OT in primate face processing has relied on intranasal admin-
istration of OT. Exogenously administered OT, however, induces OT concentrations that exceed normal physi-
ological ranges28–30, which may or may not mimic the messaging mechanisms of endogenously released OT31–35. 
Our understanding of the behavioural effects of OT at physiological concentrations is thus severely lacking15.  
Consequently, no studies to date have tested whether naturally occurring variation in face processing is related to 
endogenous OT concentrations.
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In order to understand whether naturally occurring variation in primate face processing is related to endog-
enous OT concentrations, we must also determine the most meaningful biological medium in which to measure 
it. OT is produced in hypothalamic neurons and delivered to brain nuclei and into the ventricular system via 
central pathways; it is also released into peripheral blood circulation via the posterior pituitary36. Once released 
into peripheral circulation, OT does not cross the blood-brain barrier in significant amounts37. Most studies of 
OT biology in human and non-human primates have relied on peripheral OT measurement (e.g., from blood, 
saliva, or urine) because these readily accessible media require less invasive sampling methods compared to those 
used for central OT measurement (e.g., from extracellular neuronal dialysate, or cerebrospinal fluid [CSF])38. 
Peripheral OT concentrations are most, or arguably only, informative, however, if they predict behaviourally rel-
evant central OT concentrations. Yet, the relationship between blood and CSF OT concentrations in non-human 
primate species remains poorly tested to date.

The present study addressed several fundamental gaps in knowledge by testing the relationship between indi-
vidual variation in a face recognition task and endogenous OT biology, as well the relationship between periph-
eral and central OT measurements. Specifically, we assessed preference for novel faces in infant rhesus macaques 
(Macaca mulatta), using a standardized face recognition test when monkeys were 3–4 months of age39. We next 
collected CSF and blood samples when subjects were between 1–5 years of age; samples were subsequently quan-
tified for OT concentrations. Here we show that performance on the face recognition test significantly and posi-
tively predicted CSF OT concentrations up to five years after behavioural assessment. Behavioural performance 
did not predict blood OT concentrations, and blood and CSF OT measurements were unrelated within individ-
uals. To our knowledge these are the first data linking individual differences in face processing to endogenous 
OT biology in primates, a relationship that spans juvenility into adulthood. Furthermore, these data suggest the 
importance of measuring CSF, rather than blood, OT concentrations when addressing social perception traits in 
primates.

Results
Variation in preference for novel faces. As part of a colony-wide infant behavioural assessment pro-
gram, our subjects (N = 60; 3–4 month old infant males) underwent a standard paired-comparison face recogni-
tion test (see Methods). In this task, the subject’s unequal distribution of visual attention towards an unfamiliar 
vs. familiar face (i.e., preference for novel faces) was used to infer the ability to recognize a familiar face39. As 
expected, we found naturally occurring variation in the proportion of time that infants spent gazing at novel face 
stimuli (Fig. 1a).

Early preference for novel faces predicts later CSF but not blood OT concentrations. CSF and 
blood OT concentrations were quantified using standard procedures (see Methods). Since blood OT does not 
have access to relevant receptor-expressing neural substrates37, we predicted that our measure of social percep-
tion would be most strongly associated with CSF OT concentrations. We thus first confirmed that the effect of 
preference for novel faces was due to the duration spent attending to the novel face, rather than differences in time 
spent attending to faces overall, by including the log10 of each measure as separate variables in a Weighted Least 
Squares-General Linear Model (WLS-GLM) predicting CSF OT concentration. As expected, duration attending 
to a novel face predicted CSF OT concentration (WLS-GLM: F1,53 = 9.9044; partial r = 0.40; β1 = 40.65 ± 12.92; 
P = 0.0027) despite controlling for total time attending to both faces. As would be expected if this second variable 
is important as a divisor for the first, it also showed a weaker reciprocal relationship (WLS-GLM: F1,53 = 4.4742; 
partial r = −0.28; β2 = −29.92 ± 14.15; P = 0.0391). We therefore performed all subsequent analyses represent-
ing preference for novel faces as the time spent attending to novel faces divided by the time spent attending 
to any face. As predicted, preference for novel faces positively predicted CSF OT concentrations (WLS-GLM: 
F1,54 = 8.6404; partial r = 0.37; β1 = 26.40 ± 8.980; P = 0.0048; Fig. 1b), but not plasma OT concentrations 
(WLS-GLM: F1,37 = 1.5997; partial r = −0.20; β1 = −2.635 ± 2.083; P = 0.2138; Fig. 1c), and did so in subjects 
ranging in age from juvenility to adulthood.

Plasma and CSF OT concentrations are unrelated within individuals. We next assessed the utility 
of using peripheral OT assessment as a surrogate for central OT assessment. We did so by testing whether plasma 
OT concentrations positively predicted CSF OT concentrations in concomitantly collected blood and CSF sam-
ples. Given that preference for novel faces predicted CSF, but not plasma, OT concentrations, we hypothesized 
that these OT measurements would be unrelated to one another. In keeping with this hypothesis, we did not find 
a relationship between plasma and CSF OT concentrations within individuals (WLS-GLM: F1,54 = 0.0282; partial 
r = −0.02; β1 = −0.09571 ± 0.5704; P = 0.8674; Fig. 1d).

Discussion
The ability to recognize faces of one’s own species has been experimentally confirmed (via visual paired-comparison 
or match-to-sample paradigms) across primate taxa and includes reports from humans (Homo sapiens)40,41, chim-
panzees (Pan troglodytes)2, orangutans (Pongo spp.)42, capuchin monkeys (Cebus apella)41, and Japanese, tonkean, 
and rhesus macaques (Macaca fuscata, tonkeana, and mulatta)2,41,43. This ability appears within the first few months 
of life, and develops regardless of prior exposure to faces9,44. In visually-dependent primate species, face recognition 
is critical for the formation of long-lasting social relationships and is thought to have enabled the evolution of large, 
socially complex primate groups1,4. Despite the crucial role of face recognition in primate societies, there never-
theless exists significant variation in performance on tasks used to assess face recognition ability, a phenomenon 
replicated here (Fig. 1a)8,9. This variation has long-lasting consequences for social development, as infant rhesus 
monkeys that have poor face recognition skills spend more time alone and less time engaged in social interactions 
later in life10.



www.nature.com/scientificreports/

3SCieNtifiC RePoRtS | 7: 12935  | DOI:10.1038/s41598-017-13109-5

In both human and non-human primates, it is well documented that intranasal OT administration influ-
ences how faces are processed12. For example, OT administration promotes attention to the eye region17,22 and to 
faces18,20 while selectively decreasing attention to threatening faces19. OT administration also improves the ability 
of people to correctly identify familiar faces23,24,26, and to identify individuals by face25,26. Evidence from the pres-
ent study therefore extends these pharmacological findings by providing an important physiological validation of 
OT’s role in face processing. Specifically, we found that individual variation in preference for novel faces signifi-
cantly and positively predicted endogenous CSF OT concentrations, and did so up to five years after behavioural 
assessment (Fig. 1b). These results are also consistent with the idea that individual recognition abilities critical for 
group living may be supported by central OT biology45.

Figure 1. Infant preference for novel faces and later measures of oxytocin (OT) biology. (a) Individual variation 
in visual preference for novel faces. The box-and-whisker plot shows the interquartile range and median (box), 
and the 10th and 90th percentiles (whiskers), and remaining outliers. (b) Early preference for novel faces predicts 
later cerebrospinal fluid (CSF) OT concentrations (P = 0.0048). CSF OT concentrations are corrected to reflect 
the Weighted Least Squares General Linear Model (WLS-GLM) analysis, and are thus plotted as the expected 
value for each data point, plus the weighted residual. (c) Preference for novel faces does not predict later plasma 
OT concentrations (P = 0.2138); as before, the y axis values (plasma OT level) are corrected. (d) Plasma OT 
concentrations do not predict CSF OT concentrations (P = 0.8674), as before the y axis (CSF OT level) is 
corrected. In panels (b,c, & d), the line depicts the expected values for each data point from the WLS-GLM 
regression equation.
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Although we observed a predictive relationship between early performance in a task that measures face recog-
nition ability and later CSF OT concentrations, the available data do not allow us to conclude the direction of the 
relationship between these two variables. Given that the rodent literature has experimentally established a causal 
relationship between OT and social recognition14,45–47, it is reasonable to hypothesize that early and putatively 
stable differences in central OT function underlie the observed variation in infant primate performance on a face 
recognition task. However, it is also possible that other variables, such as early parental interactions (which are 
thought to be capable of influencing social perception48,49 and peripheral levels of OT50), may explain both early 
differences in the ability to recognize faces as well as later central OT function. Similarly plausible is the notion 
that early variation in infant social perceptual ability leads to different socialization patterns during development, 
which, in turn, produced variation in the observed CSF OT concentrations later in life. Research involving CSF 
sampling earlier in life and pharmacological OT receptor blockade is now required to address the developmental 
stability of CSF OT concentrations as well as to determine the causal role of central OT signalling pathways in 
primate face recognition ability.

Unlike for our central measure of OT biology, preference for novel faces did not predict blood OT concentra-
tions in these subjects (Fig. 1c). There has been much debate over the functional significance of peripheral OT 
measurement. Although many studies have reported positive relationships between social behaviour and periph-
eral OT measurements in human and non-human primates16,51–53, including some of our own patient studies54,55, 
synthesis and interpretation of this collective evidence has been complicated by multiple factors. These factors 
include the following: 1) peripheral OT has been variously measured in blood, saliva, and urine samples; 2) stud-
ies have employed different measurement techniques (e.g., enzyme immunoassay or radioimmunoassay), with or 
without solid phase extraction, thereby yielding strikingly different OT values; 3) peripheral OT concentrations 
have been assessed under basal as well as stimulated conditions; 4) social functioning has been assessed using 
both trait and state measurements; 5) study samples have varied from healthy human and non-human primates 
to case-control clinical comparisons; and 6) studies have been conducted across multiple species38,56. Systematic 
research on peripheral OT measurement (using gold-standard OT quantification techniques), including careful 
evaluation of specific biological media in the context of both state and trait social functioning assessments, within 
a well-defined study population, is urgently needed.

Perhaps the largest gap in knowledge with regard to peripheral OT is that few prior studies have assessed both 
peripheral and central OT measurements during the same sampling session to compare which measurement is 
more informative within the context of behavioural assessment57. A strength of the present study is that we con-
comitantly collected blood and CSF samples, evaluated them both in the context of a face recognition ability task (as 
discussed above), and found that blood OT concentrations were unrelated to CSF OT concentrations within indi-
viduals (Fig. 1d). Although CSF OT may play a regulatory role in the control of peripheral oxytocin concentrations36,  
and our group has previously reported that blood OT concentrations robustly and positively predict CSF OT 
concentrations in humans (with both OT measures inversely related to anxiety)58, other research suggests that 
the central and peripheral OT pathways may be functionally independent59–61. Indeed, a previous primate study 
found that maternally-deprived rhesus monkeys showed lower CSF OT concentrations compared to control 
mother-reared monkeys, but blood OT levels in these two groups were indistinguishable57. The present and cur-
rently available findings therefore lead us to conclude that CSF OT concentrations are a more valid measure by 
which to assess social perception traits in rhesus monkeys than blood OT concentrations.

We note that this study was performed on a cohort of exclusively male rhesus macaques. Given documented 
sex differences in rhesus infant facial perception and response to OT administration (i.e., male infants look less 
at conspecific faces compared to female infants62 and administration of intranasal OT improves infant male, 
but not female, gaze following abilities63), our results establishing a relationship between performance on a face 
recognition task and later CSF OT concentrations may be sex-specific as well. Similarly, the OT system is well 
known to be behaviourally and functionally sexually dimorphic36,45,51,64. Research on female rhesus monkeys is 
now needed to systematically understand some of these potential sex differences in social perception and related 
neurobiology.

We also note that the visual-paired comparison task used in this study has its own constraints and limitations. 
For example, variation in preference for novel faces could be influenced by a variety of internal factors (e.g., 
anxiety or motivation) which could contribute to attention and gaze distribution. To guard against this, analyses 
in which attention to novel faces and overall attention to faces were initially evaluated in our model as separate 
variables to rule out the possibility that the preference for novel faces was due to these internal mental states. It is 
remains possible, although not parsimonious, that variation in any such factors could be driving the relationship 
between preference for novel faces and CSF OT concentration.

Finally, a question that remains unanswered by our study is the domain specificity of our findings. For exam-
ple, would CSF OT concentrations also have predicted performance on an identical task that used non-social 
objects instead of pictures of monkey faces (i.e., therefore indicating a global preference for novel stimuli), or 
would CSF OT concentrations only have predicted aspects of behavioural functioning related to social percep-
tion? Unfortunately, this study was not designed to address this question; follow-up research that explicitly tests 
this hypothesis is required.

In conclusion, these findings are the first to show an association between face processing and endogenous 
brain (but not blood) OT biology in primates. These data underscore the importance of measuring CSF rather 
than blood OT concentrations in studies of primate social cognition. The fact that performance on a task that 
measures face recognition predicted CSF OT concentrations years after behavioural testing suggests that central 
OT biology may support individual recognition abilities critical for group living. Finally, by revealing that natural 
variation in preference for novel faces predicts CSF OT concentrations in rhesus macaques, we continue to better 
understand the neurobiological substrates underlying a critical cognitive step in the evolution of social groups35.
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Methods
Subjects and study site. Subjects were N = 60 male rhesus monkeys (Macaca mulatta) that were born 
and reared at the California National Primate Research Centre (CNPRC). Subjects lived in outdoor, half-acre 
(0.19 ha) field corrals, measuring 30.5 m wide × 61 m deep × 9 m high. Each corral contained up to 150 animals 
of mixed age and sex social groups. Monkeys had ad libitum access to Lixit-dispensed water, primate laboratory 
chow was provided twice daily, and fruit and vegetable supplements were provided twice weekly. Various toys, 
swinging perches, along with outdoor and social housing, provided a stimulating environment. All procedures 
were approved by institutional IACUCs and complied with NIH policies on the care and use of animals.

Infant BioBehavioural Assessment (BBA) program. Subjects were enrolled in the colony-wide BBA 
program at an average of 105 ± 3 days of age (CI: 99%; range: 90–127 days). The BBA program consists of a bat-
tery of tests designed to assess infants’ behavioural and physiological reactivity as described in detail in previous 
publications65–67. One of these assessments, the face recognition test, provided a means by which to investigate 
individual differences in preference for novel faces in the present study.

During BBA testing, infants were removed from their home cages and separated from their mothers for a 25 h 
period. BBA testing occurred in cohorts of five to eight monkeys at a time, drawn from multiple social groups. 
During testing, subjects were housed individually in standard-sized holding cages (39 × 52 × 47 cm), and each 
infant was individually assessed according to a predetermined random order. Tests were video-recorded and 
coded at a later date. Immediately following the completion of BBA testing, infants were reunited with their 
mothers, and one hour later, returned to their home corrals.

Face recognition test. The face recognition test, adapted from prior published studies68,69, consisted of still 
colour photographs of rhesus monkey faces projected onto a monitor (32″ Panasonic KV 32540) in front of the 
infant subject (See Supplementary Video S1). Stimuli were neutral faces of unfamiliar individuals of different 
ages (i.e., adult and juvenile) and sex. The software package ‘Cortex’ was used to program the stimuli. Once pro-
grammed, the stimulus sequence was played back on a computer monitor and recorded to create a stimulus DVD.

During testing, two pictures (each measuring 19.7 × 22.9 cm) were always presented simultaneously, with 
each picture occupying either the left or right third of the screen. A low-light camera (Radio Shack Observation 
49–2502), attached to the playback monitor and situated midway between the two projected images, was used 
to record the subjects’ looking responses. Each subject was administered seven problem sets, with each problem 
comprising one 20-second “familiarization” and two 8-second “recognition” trials. During a familiarization trial, 
the subject was presented with a pair of identical rhesus monkey faces. Following a brief 5-second delay, the 
participant was then simultaneously presented, during the first recognition trial, with the now familiar face and a 
novel face. A second recognition trial was conducted identically, except that the positions of the novel and famil-
iar face were reversed in order to avoid directional bias. A proportional preference for novel faces compared to the 
familiar faces indicates a subject’s face recognition ability.

As previously described in a published manuscript10, four measures of looking behaviour were scored using 
Observer XT software (Noldus Inc., Leesburg, VA, USA). The four measures coded for each trial were duration of 
gaze: 1) directed to the left stimulus, 2) directed to the right stimulus, 3) directed elsewhere (but determinable), 
and 4) not determinable. All videos were coded by a single observer. Intra-observer (test-retest) reliability was 
assessed annually by coding up to 15 videos per year on two occasions at least several weeks apart. Annual reli-
ability values, calculated as the percent agreement (line by line) of the two codings, range from 86.1–92.2%. The 
duration of time gazing on target was calculated as the sum of 1 and 2. For the recognition trials, the durations for 
1 and 2, above, were recoded as duration attending to familiar and novel faces. These data were summed across 
both recognition trials, to give the total duration attending to a novel face, and the total duration on target for 
each problem.

Each subject, thus, yielded data for seven problem sets. As the problem sets might differ systematically in 
salience of individual stimuli, we followed our previous approach10, and ran a Repeated Measures-General Linear 
Model (RM-GLM) to obtain a least squares mean for each subject, for both duration attending to a novel face, and 
duration on target (i.e., a session corrected mean). This approach yields mean scores corrected for both systematic 
differences between problem sets, and for recognition trials in which a subject fails to attend to either face.

Sample collection and processing. CSF and blood samples were concomitantly obtained from each mon-
key subject to allow for direct comparison of the two matrices. Subjects underwent sample collection during one 
of two collection sessions when they were between 1 and 5 years of age. Samples were collected between 9–11 
AM to minimize any potential circadian effects on OT concentrations. Each subject was captured from his home 
corral, rapidly immobilized with telazol (5–8 mg/kg), and moved to an indoor procedure room. Supplementary 
ketamine (5–8 mg/kg) was used as needed to maintain complete immobilization. Collection of both CSF and 
blood samples was accomplished within 10–15 min of initial cage entry. CSF (2 mL) was drawn from the cisterna 
magna using standard sterile procedure. Cisternal CSF sampling is attractive because it prevents the loss in sig-
nal of brain-released neurotransmitters typically associated with the more distal lumbar sampling procedures 
utilized in humans70. CSF samples were immediately aliquoted into 1.5 mL siliconized polypropylene tubes and 
flash-frozen on dry ice. Immediately following CSF collection, whole blood samples (up to 25 mL) were drawn 
from the femoral vein, dispensed into EDTA-treated vacutainer tubes, and placed on wet ice. Whole blood sam-
ples for neuropeptide quantification were promptly centrifuged (1600 × g at 4 °C for 15 min), and the plasma frac-
tion was aliquoted into 1.5 mL polypropylene tubes and flash-frozen on dry ice. All samples were stored at −80 °C 
until quantification. After sample collection, each subject was administered replacement fluids and ketoprofen as 
needed. Each subject was placed in a standard laboratory cage for recovery overnight, after which point he was 
returned to his home corral.

http://S1
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OT quantification. CSF and blood OT concentrations were quantified using a commercially available enzyme 
immunoassay kit (Enzo Life Sciences, Farmingdale, NY). This kit has been validated for use in rhesus monkeys 
and is highly specific and exclusively recognizes OT and not related peptides (i.e., the OT cross-reactivity with 
arginine vasopressin is 0.6%). The assay’s detection limit is 11.7 pg/mL. A trained technician blinded to experimen-
tal conditions performed sample preparation and OT quantification. The CSF samples were directly assayed for 
OT using established protocols71,72, and the plasma samples were extracted using methods recommended by the 
manufacturer, and as previously published54,55. All CSF and plasma samples were assayed in duplicate (100 µL per 
well) with a tuneable microplate reader for 96-well format according to manufacturer’s instructions.

Statistical analyses. We have previously observed individual variation in preference for novel faces10. The 
following analyses tested if this individual variation was meaningful in terms of predicting OT concentrations later 
in life. All analyses were performed in JMP Pro 13.0 and SAS 9.4 for Windows (SAS Institute Inc., Cary, NC). 
Diagnostics of early analyses suggested that larger predicted OT values were associated with larger residuals and lev-
erage. Statistically, this violates the underlying assumptions of general linear methods, and runs the risk that extreme 
values may drive the results. OT assay values are derived from means of individual wells, and all things being equal, 
one would expect the variance to increase with the mean. Accordingly, larger OT assay means in general had higher 
coefficient of variation (CV) values. Rather than reject means above some critical CV (which would involve system-
atically biasing against high mean values), we adopted a more powerful approach, in which the relationship between 
each mean and CV is recognized and included in the analysis. To do so, we used WLS-GLM, in which the weighting 
of each data point systematically controls the impact of less reliable but more extreme data points73. The ideal term 
to use for weighting in these models is the reciprocal of the estimated variance of the data point, which is notoriously 
difficult to obtain73, and thus, this powerful theoretical approach is rarely used in practice. However, in this case, as 
each assay value is a mean with an associated CV, the variance can be estimated directly. The CV for each data point 
was thus converted to a variance, and then into a weight as the reciprocal of this variance.

Subject date of birth was initially included in our model as a blocking factor. After verifying its lack of influ-
ence on the model, and given the collinearity with collection session, subject date of birth was excluded in order 
to avoid model overspecification. Every analysis was then performed as a WLS-GLM, with the collection session 
included as a blocking factor (the same results held if collection session was omitted, but inclusion of this variable 
in the model is the more conservative approach). To test whether preference for novel faces predicted CSF OT 
concentrations later in life, we performed a WLS-GLM predicting mean CSF OT concentrations, weighted by 
the reciprocal of the between-well variance, and blocking by collection session. Typically face recognition tasks 
calculate the preference for novel faces as the duration of time attending to a novel face divided by the total time 
spent on target. However, doing so potentially masks the fact that these two measures convey different informa-
tion about the task. The total duration of time attending to both faces captures many alternative factors impacting 
task performance, such as anxiety or motivation. The duration spent attending to the novel face is likely affected 
by these measures, and also by preference for novelty and for novel faces. We therefore first performed an analysis 
in which both measures were included as separate variables. These variables were logged, exploiting the fact that 
log(a) − log(b) = log(a/b), so that the regression equation would model the simpler combined variable (in which 
duration attending to novel faces is divided by total duration attending to both faces). This initial analysis con-
firmed that duration attending to novel faces was positively correlated with CSF OT concentration, and that total 
duration attending to both faces in the same model was reciprocally correlated. This result rules out the possibility 
that any preference is due to an alternative variable (like motivation), and justifies the use of the simpler combined 
variable. However, the resulting multiple regression cannot be plotted in an easily understandable way. Thus, we 
ultimately calculated the duration attending to novel faces divided by the duration attending to both faces, and 
used this simpler single variable in all analyses. In these analyses, one animal did not yield usable behavioural 
data, one animal did not yield usable CSF samples, and one animal only yielded one good sample well (and thus 
a CV could not be calculated). These three animals were excluded.

To test whether preference for novel faces predicted plasma OT concentrations later in life, we performed the 
same analysis, but using the mean and variance of plasma OT wells. Several plasma samples yielded only one 
usable well, and thus no CV or variance could be calculated. These individuals were excluded from this analysis.

To test if plasma OT concentrations predicted CSF OT concentrations we performed the same analysis, using 
the mean and variance of the CSF OT wells. We included all individuals with plasma OT data, regardless of CV, 
with the exception of one individual which had a biologically implausible plasma value. Including or excluding 
this individual had no effect on the results.

The assumptions of WLS-GLM (linearity, homogeneity of variance, and normality of error) were con-
firmed graphically post-hoc74. Data are plotted as the expected value for each data point (controlling for col-
lection session), plus the weighted residual. Thus the Y axis is corrected for both collection session, and the CV 
of the original sample. Effect sizes are reported as partial r (i.e., correlation coefficients, which are unitless and 
scale-invariant), and also as the regression coefficient (the Beta, β1) ± its standard error (which are absolute effects 
sizes in arbitrary units equivalent to the units of y divided by the units of x).

Data availability. The corresponding data for this manuscript are available as supplemental information.
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