44 research outputs found

    Resilience and regime shifts in a marine biodiversity hotspot

    Get PDF
    Complex natural systems, spanning from individuals and populations to ecosystems and socialecological systems, often exhibit abrupt reorganizations in response to changing stressors, known as regime shifts or critical transitions. Theory suggests that such systems feature folded stability landscapes with fluctuating resilience, fold-bifurcations, and alternate basins of attraction. However, the implementation of such features to elucidate response mechanisms in an empirical context is scarce, due to the lack of generic approaches to quantify resilience dynamics in individual natural systems. Here, we introduce an Integrated Resilience Assessment (IRA) framework: a three-step analytical process to assess resilience and construct stability landscapes of empirical systems. The proposed framework involves a multivariate analysis to estimate holistic system indicator variables, non-additive modelling to estimate alternate attractors, and a quantitative resilience assessment to scale stability landscapes. We implement this framework to investigate the temporal development of the Mediterranean marine communities in response to sea warming during 1985–2013, using fisheries landings data. Our analysis revealed a nonlinear tropicalisation of the Mediterranean Sea, expressed as abrupt shifts to regimes dominated by thermophilic species. The approach exemplified here for the Mediterranean Sea, revealing previously unknown resilience dynamics driven by climate forcing, can elucidate resilience and shifts in other complex systems

    Environmental and anthropogenic driven transitions in the demersal ecosystem of Cantabrian Sea

    Get PDF
    In the framework of global human-induced change, marine communities’ often respond to changing conditions abruptly reorganizing into new equilibria. These shifts are difficult to predict and often imply irreversible adjustments due to hysteresis. Unraveling the role of the forces leading regime shifts is a major challenge. We explored the temporal evolution of 63 fish species representing the Cantabrian bentho-demersal community in response to environmental changes and fishing pressure in the period 1983–2018, using survey data. Via multivariate analysis and non-additive modeling of a community index and the system's main stressors, two decadal-scale regimes were revealed, suggesting a non-linear response of the community to its environment. The Integrated Resilience Assessment framework elucidated the response mechanism to the candidate stressors and allowed quantifying resilience dynamics. The decline in fishing pressure in the 1990s was associated with a gradual transition of the system, while further decline during the 2000s eroded the resilience of the system towards changes in its stressors, leading to a discontinuous response expressed as an abrupt, possibly irreversible shift in the 2010s. Given the teleconnected character of marine ecosystems, this regional study endorses the scientific effort for actions facing the dynamic impacts of climate change on exploited marine ecosystems.En prensa2,27

    Development and resilience in three Arctic ecosystems: Baltic, Barents and Iceland Seas

    Get PDF
    In this GreenMAR project we look into the historical development of the marine ecosystems that surround the Nordic countries in an effort to forecast their future evolution. We pay particular attention to the way their food webs responded to similar stressors (warming) and fishing regimes in the past. We have compiled historical information on environmental and biological components, from plankton to fish, over the last 25 to 45 years, depending on the system. On these four ecosystems we have: (i) carried out multivariate analyses to describe their main trends and (ii) constructed stability landscapes to quantify their resilience. We will show these results and discuss their implications

    New Fisheries-related data from the Mediterranean Sea (October 2015)

    Get PDF
    In this third Collective Article, with fisheries-related data from the Mediterranean Sea, we present the historical length distribution of Lophius budegassa in the catch of commercial trawlers in the Greek seas; length-weight and length-length relationships of five flatfish species (Lepidorhombus boscii, L. whiffiagonis, Platichthys flesus, Pegusa lascaris and Solea solea) from different coastal areas of Turkey (Black Sea and Eastern Mediterranean Sea); growth of settled Polyprion americanus and length-weight relationships of this species and of Deltentosteus quadrimaculatus, Capros aper and three commercially important groupers in the Eastern Mediterranean Sea; the age, growth and mortality of Zosterisessor ophiocephalus in the Eastern Adriatic Sea; the length-weight relationship and condition factor of Atherina boyeri in a Central Mediterranean semi-isolated lagoon, and also the length-weight and length-length relationships of three Alburnus species from different inland waters in Turkey

    New Fisheries-related data from the Mediterranean Sea (April 2015)

    Get PDF
    In this second Collective Article with fisheries-related data from the Mediterranean Sea we present the evaluation of bony structures in aging of Barbus tauricus, otolith dimensions-body length relationships for two species (Trachinus draco and Synchiropus phaeton), information on the growth of juvenile Thunnus thynnus and of Ruvettus pretiosus, weight-length relationships for three species (Aulopus fiamentosus, Thunnus thynnus and Tylosurus acus imperialis) and data on feeding habits and reproduction of Aulopus fiamentosus

    Mesoscale productivity fronts and local fishing opportunities in the European Seas

    Get PDF
    This study evaluates the relationship between both commercial and scientific spatial fisheries data and a new satellite-based estimate of potential fish production (Ocean Productivity available to Fish, OPFish) in the European Seas. To construct OPFish, we used productivity frontal features derived from chlorophyll-a horizontal gradients, which characterize 10%–20% of the global phytoplankton production that effectively fuels higher trophic levels. OPFish is relatively consistent with the spatial distribution of both pelagic and demersal fish landings and catches per unit of effort (LPUEs and CPUEs, respectively). An index of harvest relative to ocean productivity (HP index) is calculated by dividing these LPUEs or CPUEs with OPFish. The HP index reflects the intensity of fishing by gear type with regard to local fish production. Low HP levels indicate lower LPUEs or CPUEs than expected from oceanic production, suggesting over-exploitation, while high HP levels imply more sustainable fishing. HP allows comparing the production-dependent suitability of local fishing intensities. Our results from bottom trawl data highlight that over-exploitation of demersal species from the shelves is twice as high in the Mediterranean Sea than in the North-East Atlantic. The estimate of HP index by dominant pelagic and demersal gears suggests that midwater and bottom otter trawls are associated with the lowest and highest overfishing, respectively. The contrasts of fishing intensity at local scales captured by the HP index suggest that accounting for the local potential fish production can promote fisheries sustainability in the context of ecosystem-based fisheries management as required by international marine policies

    Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    Get PDF
    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversityVersión del editor4,411

    Are we ready to track climate-driven shifts in marine species across international boundaries? - A global survey of scientific bottom trawl data

    Get PDF
    Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.En prensa6,86
    corecore