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Abstract
Marine biota are redistributing at a rapid pace in response to climate change and shift-
ing seascapes. While changes in fish populations and community structure threaten 
the sustainability of fisheries, our capacity to adapt by tracking and projecting ma-
rine species remains a challenge due to data discontinuities in biological observations, 
lack of data availability, and mismatch between data and real species distributions. To 
assess the extent of this challenge, we review the global status and accessibility of 
ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 
samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 
59% of the metadata collected are not publicly available, highlighting that the avail-
ability of data is the most important challenge to assess species redistributions under 
global climate change. Given that the primary purpose of surveys is to provide inde-
pendent data to inform stock assessment of commercially important populations, we 
further highlight that single surveys do not cover the full range of the main commer-
cial demersal fish species. An average of 18 surveys is needed to cover at least 50% 
of species ranges, demonstrating the importance of combining multiple surveys to 
evaluate species range shifts. We assess the potential for combining surveys to track 
transboundary species redistributions and show that differences in sampling schemes 
and inconsistency in sampling can be overcome with spatio-temporal modeling to 
follow species density redistributions. In light of our global assessment, we establish 
a framework for improving the management and conservation of transboundary and 
migrating marine demersal species. We provide directions to improve data availability 
and encourage countries to share survey data, to assess species vulnerabilities, and to 
support management adaptation in a time of climate-driven ocean changes.

K E Y W O R D S

bottom trawl survey, climate change, demersal fish, fisheries policy, global data synthesis, 
open science, species distribution, transboundary conservation

1  | INTRODUC TION

Marine species worldwide are redistributing in response to cli-
mate change and variability (Pinsky et  al.,  2019; Poloczanska 
et al., 2013). The movement of individuals from one location to an-
other in response to climate change, either through active migra-
tion or passive dispersal of early life stages, results in expansion to 
unoccupied areas (Dulvy et al., 2008; Perry, 2005). Such redistri-
butions have profound consequences for biodiversity, structures 
and functions of marine ecosystems (Batt et al., 2017; Friedland 
et al., 2020; Kortsch et al., 2015; Magurran et al., 2015; McLean 
et al., 2019; Mérillet et al., 2020). While species on the move have 
important socio-economic consequences (Greenan et  al.,  2019; 
Pinsky & Fogarty, 2012), our capacity to adapt to these changes 
by tracking and projecting species range shifts across regional 
boundaries remains a challenge, not only scientifically, but also 
economically and politically (Lindegren & Brander,  2018; Pinsky 
et al., 2018).

The capacity to detect shifts in species ranges depends 
foremost on the ability to monitor species through, among oth-
ers, the existence, coverage, and quality of surveys on land and 
in the oceans (Blowes et  al.,  2019; Dornelas et  al.,  2018; Edgar 
et  al.,  2017). Among them, scientific bottom trawl surveys were 
started in the 1900s and collect demersal marine species (living 
over and on the sea bottom) on continental shelves and slopes in 
many areas of the world (Garces et al., 2006; Trenkel et al., 2019). 
The primary purpose of these surveys is to provide fishery-inde-
pendent data to inform stock assessment of commercially import-
ant demersal populations, and more recently for multidisciplinary 
ecosystem monitoring. Many of the surveys offer long time series 
on community composition and provide a unique opportunity to 
track species range shifts and improve the assessment of biodiver-
sity under global change.

Studies examining climate change impacts on marine communi-
ties across large regions have mostly focused on the North Atlantic, 
Northeast Pacific, and Australian ecosystems (Lenoir et  al.,  2020; 

[Correction added on 5 December 2020, 
after first online publication: the author 
affiliation section has been modified.]  

mailto:aurore.aqua@gmail.com


     |  223MAUREAUD et al.

Richardson et  al.,  2012). This focus is at least partly due to ready 
availability of ecological surveys in these regions and the lack of 
knowledge regarding surveys elsewhere. While there is a global 
movement towards “open science” (OCDE,  2015), particularly by 
making data publicly available (Cheruvelil & Soranno, 2018; Gallagher 
et al., 2020; Nosek et al., 2015; Poisot et al., 2019), it has also sparked 
considerable debate over how to proceed (Moles et al., 2013; Poisot 
et  al.,  2013). Therefore, the application of open science principles 
remains a challenge. From a political and management perspective, 
there is a need to combine surveys across international boundaries 
because commercial species spread and redistribute over multiple 
management areas, requiring transboundary assessments (Baudron 
et al., 2020; Ramesh et al., 2019). The lack of such assessments may 
lead to political disputes over shifting fisheries resources (Pinsky 
et al., 2018; Shackell et al., 2016; Spijkers & Boonstra, 2017). If the 
data generated by bottom trawl surveys are available and combined 
properly—they may allow near-seamless comparisons of species 
distribution and abundance in time and space. Developing knowl-
edge on marine species responses to climate change is the first step 
towards developing transboundary and international management 
plans.

To uncover the difficulties preventing a global assessment of 
marine species redistributions, we first review the existence and 
availability of bottom trawl surveys worldwide by collecting survey 
metadata. We assess the global coverage of productive and trawled 
seas by bottom trawl surveys. Second, we show the importance of 
combining surveys to cover commercial species ranges. Third, we 
demonstrate that modeling can appropriately incorporate multiple 
surveys to follow species density in time and space. We propose a 
framework where open science would help to support transbound-
ary management and conservation.

2  | GLOBAL AVAIL ABILIT Y OF TR AWL 
SURVE Y DATA

Scientific bottom trawl surveys have been conducted in many 
countries in continental waters—sampling demersal fishery re-
sources on continental shelves and slopes. They have formed the 
backbone of information supporting research on marine fish com-
munities in response to climate change and variability across eco-
systems and over large spatial scales (Beukhof et al., 2019; Branch 
et  al.,  2010; Gislason et  al.,  2020; Pecuchet et  al.,  2017; Pinsky 
et al., 2013; Shin et al., 2005), as well as meta-analysis across taxo-
nomic groups and biomes (Antão et al., 2020; Burrows et al., 2019; 
Lenoir et al., 2020). However, a single bottom trawl survey (hence-
forth survey) is typically carried out nationally, regionally or within 
a delimited management zone (but this is not the case for some 
of the European surveys). As a result, monitoring protocols dif-
fer among surveys, and the data are not always publicly available, 
while the assessment of species range shifts critically depends 
on the availability and quality of surveys (Costello et  al.,  2013; 
Schindler & Hilborn, 2015).

2.1 | Global data synthesis

To assess the existence and accessibility of fishery-independent 
data on demersal species in the global ocean, we collected survey 
metadata (latitude, longitude, and depth if available) for recent and 
ongoing surveys that included at least 1 year of sampling since 2015 
and use otter trawl gear, the most common gear type. We only re-
tained surveys that were performed for 4 years or more between 
2001 and 2019 (complete list in Table  S1.1). Finally, we excluded 
surveys covering near-shore areas (within 3  miles from the coast) 
as they primarily target juvenile or coastal fish. Species life cycles 
are affected by climate change (Petitgas et al., 2013), and surveys 
providing information on the different life stages of shifting spe-
cies—such as near-shore surveys—could constitute a complementary 
global source of survey data to the one presented here. We recorded 
all surveys that did not meet our criteria (Table S2.1).

The survey metadata built on knowledge of existing survey col-
lections (https://datras.ices.dk/, https://ocean​adapt.rutge​rs.edu/, 
https://james​-thors​on.shiny​apps.io/FishV​iz/) and studies using ag-
gregated surveys (Beukhof et al., 2019; Branch et al., 2010; Gislason 
et  al.,  2020; Pecuchet et  al.,  2017; Pinsky et  al.,  2013; Trenkel 
et al., 2019). We sent a standardized query to established and iden-
tified contacts of surveys from national fisheries institutes, par-
ticularly where geographical gaps were identified (South America, 
Africa, Asia, and Oceania). We acknowledge that despite rigorous 
querying, some surveys might still be missing. For each survey, based 
on haul coordinates, we estimated the spatial area covered using an 
alpha-convex hull method (Pateiro López & Rodriguez-Casal, 2019), 
with a volume shape set to α = 1. Overall, available metadata covered 
95 surveys across 78 Exclusive Economic Zones (EEZs) and included 
283,925 unique geo-referenced hauls from 2001 to 2019 (Figure 1; 
Table S1.1) that covered approximately 2,509,000 km2.

2.2 | Surveys cover productive and fished 
continental shelves

We compared the spatial extent of the surveys with: (a) the area 
covered by productive continental shelves, (b) the area fished by 
bottom trawlers, and (c) fisheries catch. We used global depth data 
(GEBCO https://www.gebco.net/), chlorophyll-a concentration data 
(GlobColour GSM, 2005–2015; Maritorena et  al.,  2010), and bot-
tom trawl fishing data from Global Fishing Watch for the years 2013 
to 2016 (Kroodsma et  al.,  2018). Data were aggregated on a grid 
(0.04°  ×  0.04°). High concentrations of chlorophyll-a in continental 
seas is one of the main factors forming the basis for high fisheries pro-
ductivity (Stock et al., 2017). Therefore, to define productive shelf sites 
that could be monitored by bottom trawl surveys, we assigned depth 
and chlorophyll-a thresholds: a cell was considered a productive shelf 
site if its depth was 30–500 m—the main depth range targeted by bot-
tom trawl surveys—and if its chlorophyll-a concentration was higher 
than 0.5 mg/m3 (alternative thresholds are shown in Supplementary 
S3). A cell was counted as fished if more than one trawling activity was 

https://datras.ices.dk/
https://oceanadapt.rutgers.edu/
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detected in the period 2013–2016. We then compared cells with the 
survey convex hulls to compute the global proportion of productive 
shelves and fished areas covered by surveys. We estimated that the 
surveys cover 62% of continental productive seas and 54% of coastal 
bottom trawl fished areas (Figures S3.3 and S3.5).

To estimate the fisheries productive areas covered by the sur-
veys, we used global marine fisheries landing data for 2000–2014 
(Watson, 2017). Landings data were averaged on the time-period in 
each 30 min spatial grid cell to estimate an average fisheries produc-
tion estimate (in tons/year). We computed the ratio of total fisheries 
landings (tons/year) from areas within the survey areas to the total 
global landings (tons/year). We estimated that the surveys cover an 
area that is responsible for 18% of the global fisheries production 
(Figure S3.6). We repeated the same methodology to estimate the 
coverage of demersal fisheries production and found that surveys 
cover an area that represents 20% of demersal fisheries production 
(Figure S3.7). Both of these ratios are low, likely because the collec-
tion of bottom trawl surveys only partly covers demersal commu-
nities around the global oceans. A number of productive areas are 
missing, including tropical seas in Central, South America, and Asia. 
Second, our collection does not represent many other exploited ma-
rine species such as pelagic fish. Pelagic fish monitoring programs 
exist but were beyond the scope of this study.

2.3 | Criteria for data accessibility

The survey metadata were classified based on their relative degree 
of accessibility, using the following classification criteria:

●	 Publicly available: data for all years and species sampled were 
available in a public repository

●	 Partly publicly available: data only for some years, or only for some 
species were available in a public repository and access to full data 
is possible upon request

●	 Available upon request: data are not publicly available but access 
to data is possible upon request. This category was assigned if 
at least one person not affiliated to the institution that owns the 
data obtained the full raw data via request

●	 Not publicly available: when the data, to the best of our knowl-
edge, were not publicly available, access to data is not possible 
upon request, but access to metadata is possible upon request

●	 Incomplete metadata: when the data were not publicly available 
and we received access to partial survey metadata via request, or 
were reconstructed from the literature

●	 Unavailable metadata: when we were aware of ongoing surveys 
but did not receive access to the metadata, and/or were unable to 
reconstruct the metadata from the literature

2.4 | Global status of availability

Among all collected surveys, species abundance/biomass data from 
41% of the survey hauls are publicly available, while an additional 31% 
of the surveys are partly publicly available or available upon request 
(Figure  1). The remaining 28% of the surveys are classified as not 
publicly available or have incomplete metadata and are therefore not 
available. While species range shifts in response to climate change 
have occurred across a broad range of aquatic organisms worldwide 

F I G U R E  1   Worldwide availability 
of bottom trawl surveys, classified as 
follows: publicly available (blue), partly 
publicly available (orange), available upon 
request (purple), not publicly available 
(red), incomplete metadata (black) and 
unavailable metadata (dark grey for 
countries conducting the survey). 
(a) Location of ongoing scientific 
bottom trawl surveys, represented by 
the survey convex hull. Surveys are 
classified according to their availability. 
Additional visualizations are available in 
Supplementary S4. (b) Number of samples 
for 2001–2019 and availability across 
continents. (c) Relative availability of 
samples across continents [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(Lenoir et al., 2020; Pecl et al., 2017; Poloczanska et al., 2013), most 
marine studies are concentrated in the northern hemisphere with 
a majority of surveys located in the North Atlantic and northeast 
Pacific. This can be explained by the geographical coverage of 
surveys in the southern hemisphere, which is considerably more 

restricted and includes almost exclusively not publicly available 
data, except for South Africa, Chile, New Zealand, Falkland Islands 
and Kerguelen Islands (classified as partly publicly available and avail-
able upon request, Figure  1a,b). Lower transnational collaboration 
within Regional Fisheries Management Organizations (RMFOs) in 

BOX 1 Applying open science principles to bottom trawl survey data

Open Science is broadly defined as “Open data and content that can be freely used, modified, and shared by anyone for any [ethical] 
purpose” (http://opend​efini​tion.org/), and is more specifically described by six main principles (see Gallagher et al., 2020 for a general 
description). Following is a summary of advances towards Open Science and challenges regarding the use of bottom trawl surveys.
1.	Ensure ethical use of shared information
	 It is crucial that the push towards open science recognizes the value and human side of information. Nations and communities, 

particularly those that have been historically exploited must be able to benefit from their own data and be able to control their own 
information to minimize potential abuse. Open science must ensure that open data do not enable an opportunistic fishing company 
to exploit a nation's or community's resources. While open science can promote transparent science and understanding, it is essen-
tial that any use of open data give priority, proper credit, acknowledgement and potentially compensation to those who collected 
the information, paid for collection and recognize the nation where the data were collected. Access to data from economically 
stressed nations may require some type of compensation to ensure the data continue to be collected and made available.

2.	Improve knowledge on existing trawl surveys (“Open resources”)
	 Knowledge about the existence of a survey and about the essential course of actions to request and access the survey data can 

be a challenge. This could be facilitated through a network or a platform where scientists can share such relevant information. 
Regional platforms currently exist in some areas: Western Africa (http://www.proje​t-istam.org/; http://pesca​o-demer​stem.org/), 
Southeast Asia (Garces et al., 2006), Europe (https://datras.ices.dk/) and North America (https://ocean​adapt.rutge​rs.edu). Such 
platforms would ideally improve the visibility of their resources by making their metadata available and easily visible. Here, we 
established a global network for open resources regarding bottom trawl surveys, where metadata of surveys and contacts or links 
to access full data are provided (Table S1.1 and https://rfrel​at.shiny​apps.io/metab​ts/). The difficulty in obtaining survey metadata 
and accessing it suggests that challenges remain to create an exhaustive global resource for bottom trawl surveys that can be 
maintained on the medium and long term.

3.	Improve the accessibility and availability of surveys (“Open data”)
	 An evaluation of the accessibility and availability of surveys is necessary to enhance further open data science. We assessed that 

59% of the samples collected are not publicly available to varying degrees (Figure 1). The network created here greatly improves 
the visibility of surveys, by presenting their metadata. Further, the availability of data can only be improved by changing the 
way we share scientific information, for instance by publishing data (Costello et al., 2013) and ensuring quality-controlled use of 
data. Several bottom trawl surveys are published online, but the most recent years are not always included, or links to access the 
data are not always maintained, e.g., the Norwegian surveys (Djupevåg, 2018), the southern Gulf of St Lawrence survey (Swain 
et al., 2016), Mauritania (Kidé et al., 2015), southeast Asian surveys (Garces et al., 2006). Ensuring online publication of data are 
updated and maintained is key, as is done for other repositories (e.g., DATRAS from the International Council for the Exploration 
of the Sea https://datras.ices.dk/). Existing platforms that enable online data publication, however, may not always allow updating 
or involve peer-review of the data (e.g., PANGAEA https://www.panga​ea.de/ and DRYAD https://datad​ryad.org/stash). To ensure 
data are available beyond a single report or publication, a dedicated, sustainable, long-term management strategy is required with 
dedicated personal. The data repositories mentioned above that update and maintain their information all have dedicated pro-
grams and resources to ensure the data are available.

4.	Improve the visibility of the expertise on surveys (“Open source” and “Open methods”)
	 To ensure appropriate use of the data, it is highly important that survey protocols, reports, and common practices are shared to-

gether with the raw survey data. Furthermore, providing example code to clean the data or to combine data from multiple surveys 
can ensure the appropriate use of data. Such types of open source and open access methods have been developed in recent years, 
mostly for Europe and North America (for instance https://ocean​adapt.rutge​rs.edu/; https://james​-thors​on.github.io// for codes; 
https://datras.ices.dk/ and Moriarty et al. 2017 for codes and published reports). However, such documentation and tools need 
to be available and easy to find beyond Europe and North America, as well as in multiple languages. Together with the survey 
metadata information, we started gathering such information (see Table S1.1).

http://opendefinition.org/
http://www.projet-istam.org/
http://pescao-demerstem.org/
https://datras.ices.dk/
https://oceanadapt.rutgers.edu
https://rfrelat.shinyapps.io/metabts/
https://datras.ices.dk/
https://www.pangaea.de/
https://datadryad.org/stash
https://oceanadapt.rutgers.edu/
https://james-thorson.github.io//
https://datras.ices.dk/
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the southern hemisphere may explain this difference in availability. 
While our international review of the coverage and accessibility of 
scientific surveys shows that surveys are regularly conducted across 
continental shelf seas worldwide (78 EEZs), a vast majority of the 
publicly available data are located in Europe and North America 
(Figure 1c).

2.5 | Need for improving data availability

The dominance of northern hemisphere climate change studies has 
been specifically criticized (Feeley et al., 2017; Lenoir et al., 2020; 
Lenoir & Svenning, 2015; Richardson et al., 2012). The under-rep-
resentation of tropical seas, polar areas, and southern hemisphere 
studies may mislead our understanding of demersal communities' 
response to global change. The non-availability of data can be driven 
by lack of human and/or logistical resources and capacity to maintain 
data management systems, or by institutional incentives controlling 
data access. Furthermore, the difficulty and inability to obtain even 
metadata from established contacts of current, known surveys, 
might illustrate that the location of sampling is considered as sensi-
tive, likely from a political and economic perspective. We provide 
here the most exhaustive assessment of ongoing bottom trawl sur-
veys metadata around the world, and we provide information on 
who owns these data and where they can be requested, aiming to 
enhance data sharing (Box 1).

There are many documented cases where disagreements re-
garding fishing rights have led to serious international conflicts 
(GuÐmundsson,  2006; Spijkers & Boonstra,  2017). Improved sci-
ence regarding range shifts across regional boundaries, their im-
pacts on fisheries and fishing communities (Pinsky & Fogarty, 2012; 
Shackell et al., 2016; Young et al., 2019), as well as political and reg-
ulation landscapes (Cheung et al., 2012; Dubik et al., 2019; McIlgorm 
et al., 2010), could lead to better planning for contingencies regard-
ing climate-driven distribution shifts. This would provide scientific 
information to design adaptation and management measures that 
anticipate potential international conflicts. We therefore argue that 
financial or political incentives should be identified to better share 
the existing data, and develop good data management systems 
(Fenichel & Skelly, 2015). However, benefits from sharing data are 
diffuse, while their costs (in terms of lost publication opportuni-
ties for local teams) are concentrated (Fenichel & Skelly, 2015), and 
this leads to the well-known “concentrated-diffuse'' mechanism for 
policy failure. Embargo periods could help alleviate some of these 
issues. This type of policy failure can be partly overcome by concen-
trating scattered incentives, either by providing multilateral forums 
where many scientists can jointly benefit from data sharing (e.g., 
North Pacific Marine Science Organization, https://meeti​ngs.pices.
int/, International Council for the Exploration of the Sea, https://
www.ices.dk/, RFMOs) or by bilateral data sharing agreements 
(Hammer & Hoel, 2012). The movement towards publicly available 
and accessible data in science can lead to a lack of recognition of the 
source, devaluation of essential investments such as data collection, 

preparation, and curation (Fenichel & Skelly,  2015). As a result, it 
remains hard to enhance public availability of data. Publishing data, 
following FAIR principles (Findable, Accessible, Interoperable and 
Reusable, https://www.go-fair.org/fair-princ​iples/) as well as open 
science principles, could ultimately increase the visibility of sur-
veys but will face the challenge of thoughtfully using the data by 
prioritizing the need to give credit to the data providers (Costello 
et al., 2013; Box 1).

3  | TR ANSBOUNDARY SPECIES R ANGE 
COVERED BY SURVE YS

Studies quantifying species range shifts often focus on a specific re-
gion covered by one or multiple surveys that might not fully cover 
the species’ native range (Albouy et  al.,  2012; Dulvy et  al.,  2008; 
Morley et  al.,  2018; Perry,  2005). In fact, species’ ranges may ex-
tend well beyond the monitored area and the resulting range shifts 
may be misrepresented by the survey(s). Demersal fish habitats are 
often only partially covered by surveys, particularly since surveys 
are designed to sample soft bottoms on primarily shallow continen-
tal shelves, hence excluding hard bottoms and reefs. Most of the 
surveys are limited by depth, sampling the continental shelves but 
rarely the slopes at greater depths. Moreover, ecosystems beyond 
national jurisdiction are often excluded, which is problematic in 
case of straddling stocks. To assess the percentage of species range 
covered by current surveys, and to evaluate the probability of spe-
cies range shifts to occur beyond surveyed areas, we compared the 
habitat from species distribution models to the areas covered by the 
surveys.

To estimate the extent to which existing surveys cover species 
distribution range, we selected the top three demersal species with 
the highest commercial catch in each of 19 FAO fishing areas from 
FishStats (FAO,  2017; http://www.fao.org/fishe​ry/stati​stics/​softw​
are/fishs​tat/), defined as the average catch over 2001–2019. We 
ended up studying 37 demersal species (with some species covering 
several FAO areas). For the commercial species identified, we down-
loaded the native range from AquaMaps (Kaschner et  al.,  2016), 
which shows the probability of occurrence of each species on a 
0.5° × 0.5° grid. We used the modeled native range and considered 
it as the “true” habitat and species range. The habitat in AquaMaps is 
based on publicly available global occurrence data and expert judg-
ment on species environmental niches. Even though AquaMaps may 
sometimes misrepresent species ranges because of poor occurrence 
data and lack of knowledge for some species (O’Hara et al., 2017), 
the ranges of the selected commercial species are generally well 
documented. The preferred habitat data layer of each species for 
the analysis was defined as all locations from the AquaMaps habitat 
maps where the probability of occurrence was higher than 0.5 (alter-
native thresholds are shown in Supplementary S5).

Next, we calculated the percentage of cells from the AquaMaps 
species habitat area covered by the survey footprints, showing the 
overlap between the two. We also included the availability status of 

https://meetings.pices.int/
https://meetings.pices.int/
https://www.ices.dk/
https://www.ices.dk/
https://www.go-fair.org/fair-principles/
http://www.fao.org/fishery/statistics/software/fishstat/
http://www.fao.org/fishery/statistics/software/fishstat/
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surveys. We demonstrate that no combination of available surveys 
covers the entire range of any single species (Figure 2a). Nevertheless, 
for about a quarter of the species considered, existing surveys cover 
more than 50% of the species habitats, up to a maximum of 79% for 
Atlantic cod (Gadus morhua). However, even for these well-surveyed 
species, the surveys are sometimes not available (MVO, Lophius vom-
erinus and HKK, Merluccius capensis in Southeast Atlantic and South 
Africa) or only a part are publicly available (PCO, Gadus macroceph-
alus and ALK, Gadus chalcogrammus in the North Pacific). We com-
puted the number of surveys that overlapped with the species native 
range and show that the number needed to cover at least 50% of 
the main commercial species habitat is highly variable (from 4 to 31, 
average of 18, Figure 2b) and depends on the areas covered by each 
survey. The restricted spatial extent of some surveys conducted in 
Europe explains why more than 15 surveys may be needed to cover 
50% of a specific species range. AquaMaps may be a poor proxy for 
the habitat of some species, where the habitat suitability is under/

over-estimated. We expect that this would particularly affect the 
proportion of native habitat covered by surveys, but not much the 
number of surveys required to cover the range. For instance, if the 
distribution is wrongly projected in unoccupied areas by the spe-
cies (e.g., offshore), the estimated number of surveys is less likely 
to change. Even if potentially inaccurate for some species, this large 
open source of data demonstrates the need for standardizing sur-
veys and developing tools to combine data from different surveys.

In addition to being covered by multiple surveys, species can also 
be spread over multiple EEZs, and are in this case transboundary. 
To assess whether species are transboundary, we calculated how 
many EEZs are covered by each of the 10 species mostly covered 
by surveys (Figure  2c), using species’ predicted distribution from 
AquaMaps as the species range. All 10 species are transbound-
ary species and 50% of them are spread over more than 10 EEZs. 
Importantly, these species are not managed at a species level, but 
at a population (or stock) level. Climate change is affecting marine 

F I G U R E  2   Transboundary commercial 
species covered by surveys. Main 
commercial demersal species are 
identified by the ASFIS 3-letter codes 
and the corresponding coverage by 
the surveys: (a), proportion of species 
AquaMaps habitat covered by the surveys 
(the vertical dotted line indicates 50% of 
range covered); (b), number of surveys 
behind the proportion covered (species 
for which less than 50% of range covered 
are shaded, colors indicate the availability 
status attributed to each survey); and 
(c), number of Exclusive Economic Zones 
(EEZs) covered by the species range 
based on AquaMaps. Stars on (c) indicate 
Atlantic cod (pink) and European hake 
(green). Corresponding Latin names 
to species are available in Table S5.1. 
For Atlantic cod (d) and European hake 
(e), maps display the EEZs covered by 
AquaMaps species range, as well as fish 
stocks spatial boundaries as recorded 
in the RAM Legacy Stock Boundary 
Database. The bottom panel further 
indicates the number of EEZs covered 
by each Atlantic cod and European hake 
stock ((f) and (g), respectively). Figures 
in (d–g) show the number of EEZs 
overlapped by each stock. Note than 
stock delineation in some of these stocks 
(e.g., stock number 1 for hake) is under 
current research and may change in the 
near future
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life at multiple levels from species, to stock complexes containing 
populations, to single fished stocks (Free et al., 2019). To assess fish-
eries stocks that may be transboundary, we used the RAM Legacy 
Stock Boundary Database (Free et al., 2019), focusing on the avail-
able spatial boundaries of 21 Atlantic cod stocks (Gadus morhua) 
and 9 European hake stocks (Merluccius merluccius) as case studies 
(Figure  2d–g; see Supplementary S6 for methodological details). 
Atlantic cod is spread over more than 18 EEZs (Figure 2c), and its 
stocks are transboundary as well (14 out of 21 stocks are spread over 
more than 1 EEZ, Figure 2d,f). Similarly, European hake range covers 
30 EEZs, and all stocks are transboundary (Figure 2e,g). We note, 
however, that this database of stock boundaries is under revision, 
and so these numbers should be taken as illustrative but not defin-
itive. It is critical to improve our knowledge of stock delimitations 
and population complexity, which differ across systems/species, and 
can be altered by climate change (Kerr et al., 2017). Most species in 
the North Atlantic such as cod and hake are already managed within 

management areas representing multiple countries. However, the 
management of transboundary shifting species still requires specific 
adaptation, starting with an accurate assessment of species geo-
graphical redistribution over management areas and EEZs by com-
bining multiple regional surveys.

4  | TR ACKING SPECIES DENSITIES 
ACROSS MANAGEMENT ARE A S

We have shown that demersal fish ranges and habitats are not fully 
covered by bottom trawl surveys, which may be particularly problem-
atic when species and fisheries stocks are transboundary. However, 
the capacity to track such transboundary species throughout their 
range critically depends on the ability to combine surveys from mul-
tiple sources and regions. In cases where data are available and gath-
ered from different sources, formatting, language differences and 

F I G U R E  3   Density estimates for 
arrowtooth flounder (Atheresthes 
stomias) along the northeastern Pacific 
coast containing contiguous sampling 
data from multiple surveys in log(kg/
km2) using regional bottom trawl 
surveys: West Coast US (WCANN), 
West Coast Vancouver Island (WCVI), 
Hecate Strait (HS), West Coast Haida 
Gwaii (WCHG), Queen Charlotte (WCS), 
Gulf of Alaska (GOA), eastern Bering 
Sea (EBS), northern Bering Sea (NBS), 
Aleutian Islands (AI), and Bering Sea 
slope (BSS). Polygon contours represent 
the different surveys, as indicated by 
the corresponding codes. Densities are 
presented for 3 years: (a) 2001, (b) 2009, 
and (c) 2018. Only densities higher than 
0.1% of the maximum were selected to 
clearly differentiate areas occupied by 
the species (color-coded) from those 
mostly unoccupied (white). The inset in 
the bottom panel shows the change in 
the center of gravity through time, where 
longitude and latitude for 2001 are (0;0) 
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lack of user expertise on the survey itself may limit the ability to 
use the data appropriately. For instance, information on units, haul 
duration or swept area estimates are sometimes lacking, limiting the 
combined use of multiple independent surveys. In addition, differ-
ences in gear, sampling designs, species identification procedures 
and catchability across and within surveys may bias perceptions of 
species distribution and regional changes in abundance. In order to 
standardize processing of such data, we recommend improving the 
availability of survey documentation, including explanations of sur-
vey methodology and associated coding that can be freely applied 
to clean, standardize, and combine surveys (Box 1). Making expert 
knowledge easily accessible will facilitate studies combining multiple 
surveys (see for instance Moriarty et al., 2017).

4.1 | A case study to combine surveys 
across regions

We used arrowtooth flounder (Atheresthes stomias) to illustrate how 
to combine survey data across multiple regions when tracking and 
investigating population-scale range shifts in species distribution. 
Arrowtooth flounder is a widespread and ecologically important 
predator in the northeast Pacific (Aydin & Mueter,  2007), moni-
tored and assessed by 10 distinct but contiguous surveys across 
the region from the California Current to the Bering Sea between 
2001 and 2018, conducted by the United States and Canada 
(Supplementary S7; Figure 3a). To predict densities within the en-
tire survey domain, we fit a spatio-temporal Poisson-link delta-
gamma model (Thorson,  2017) to biomass data from each survey 
using the R-package VAST (Vector Autoregressive Spatio-Temporal, 
Thorson, 2019b; Thorson & Barnett, 2017). This model has the ad-
vantage of interpolating density across time and space within the 
survey domain when survey data are lacking in a given area or time 
step (Supplementary S7). We assumed that each survey has iden-
tical gear performance (i.e., catches the same proportion of indi-
viduals within the area-swept by bottom trawl gear). The validated 
model shows that the highest densities of arrowtooth flounder are 
observed in the center of distribution within the Gulf of Alaska 
(Figure 3). However, densities have recently increased in the eastern 
Bering Sea and the distribution has shifted inshore and northward. 
Simultaneously, its distribution has slightly moved southward in the 
California Current. Despite this expansion at both ends of its range, 
the centroid of the population shows a net change northward by 
40 km in less than 20 years (Figure 3c).

4.2 | Improving the management of 
transboundary species

The use and coordination of multiple surveys is needed to monitor 
commercially important species distributions that extend beyond a 
singular survey. Our case study and other recent studies show that 
statistical models can reconstruct species densities across surveys, 

even when they follow non-overlapping designs (Dolder et al., 2018; 
Ono et  al.,  2018; Selden et  al.,  2020; Thorson et  al.,  2016). This 
type of modeling can appropriately quantify the changes of den-
sities through time and across regions by correcting for unbal-
anced sampling (O’Leary et  al.,  2020; Thorson,  2019b; Thorson & 
Barnett, 2017). The multiple-survey approach—applied here to the 
arrowtooth flounder—is applicable for many other wide-ranging 
species, including commercially important transboundary species 
such as Greenland halibut (Wheeland & Morgan, 2019), Pacific cod 
(Drinkwater,  2005), and Atlantic cod (Morley et  al.,  2018; Spies 
et al., 2020). For each of these species, combining surveys will re-
quire initial research to determine the most appropriate methods 
to account for differences in catchability between surveys, species, 
and sites (Fraser et al., 2007; Moriarty et al., 2020; Thorson, 2019b; 
Walker et al., 2017). This could be done by using regression-discon-
tinuity-designs to estimate catchability ratios for surveys that are 
contiguous, but not overlapping. Furthermore, ongoing efforts to 
standardize national surveys will also help to combine surveys: Russia 
and Norway started a joint ecosystem-wide survey in the Barents 
Sea (Eriksen et al., 2018), and Mediterranean countries ensure con-
sistent sampling protocol across EU regions of the Mediterranean 
Sea through the MEDITS program (Spedicato et  al.,  2020). Our 
knowledge of species redistribution across surveys will clearly ben-
efit from long-term consistent surveys, when combined and mod-
eled appropriately.

Long-term global monitoring datasets are essential to develop 
transboundary science, and offer opportunities to improve the 
management and conservation of migrating transboundary species 
(Box  2). Under global change, migrating species create a poten-
tial for economic and political conflicts (Mendenhall et  al.,  2020), 
and may lead to species overexploitation or collapse in the case 
of lack of adaptation and cooperation (Miller & Munro,  2004; 
Oremus et  al.,  2020; Pershing et  al.,  2015; Pinsky et  al.,  2018; 
Vosooghi, 2019). The 1982 United Nations Convention on the Law 
of the Sea (UNCLOS) provides the legal framework for international 
obligations towards safeguarding marine resources. Migratory and 
transboundary stocks are principally managed by RFMOs (Aqorau 
et  al.,  2018; Miller & Munro,  2004; VanderZwaag et  al.,  2017), or 
conservation-related initiatives such as the Global Transboundary 
Conservation Network (http://www.tbpa.net/). Still, these organi-
zations need to explicitly consider governance in the context of cli-
mate change (Oremus et al., 2020; Pentz et al., 2018; VanderZwaag 
et al., 2017). While building a common understanding of status and 
trends is a key first step towards transboundary cooperation (Pinsky 
et al., 2018), international governance will require global geopolitical 
flexibility and the establishment of transnational agreements (Miller 
et  al.,  2013; Scheffers & Pecl, 2019), which need to be supported 
by cross-boundary open science (Boxes 1 and 2). The adaptation of 
management and policy is essential for the sustainability and con-
servation of shared resources, but are often motivated by economic 
and cultural values rather than ecological considerations (Scheffers 
& Pecl,  2019). Clear and transparent scientific evidence of geo-
graphical distributions can help to incorporate species biogeography 

http://www.tbpa.net/


230  |     MAUREAUD et al.

BOX 2 Towards a framework for transboundary management and conservation

1.	Agreement of Survey Data and Analyses. All parties must agree on data, information, current abundance and spatial footprint of 
the fisheries stock and species of interest

a.	Find the surveys covering the species range. The first key task is to establish which surveys cover the native range of the species of 
interest. The next task is to find and access surveys corresponding to that species native range. A list of existing surveys, their 
time coverage and available samples are available here for demersal species (see Table S1.1). If surveys are not publicly available, 
one can use the network of contacts published in this paper and/or establish bilateral/multilateral agreements to gain access to 
the survey data. Metadata should also ideally include a list of species recorded in the surveys.

b.	Estimate the change in species density and distribution. Surveys vary in terms of design, gear, catchability, and sampling methods. 
Multiple surveys can be combined to estimate species density and reconstruct past temporal changes in spatial distribution. 
Modeling the change in species distributions can be done with multiple models and needs to take into account survey discrep-
ancies (Dolder et al., 2018; Ono et al., 2018; Selden et al., 2020; Thorson et al., 2016). Sharing information across international 
boundaries could enable a more complete picture of the distribution of a fish population and reconsideration of the definition of 
their stock structure.

c.	 Forecast changes in densities and distributions. Building on the knowledge of past species distribution change and ecology, forecast-
ing species distribution will enable adaptation to changes in advance (Payne et al., 2017). The spatio-temporal model described 
here can also be used to forecast species distributions in the near future (Thorson, 2019a), and thus the spatial scale at which 
adaptation measures should be applied.

d.	Measure ecosystem impact in local management areas. Climate change enhances the dynamic nature of changes in species abun-
dance and requires fisheries management to adapt, not only directly to the resource, but also to assess the impacts on port 
infrastructure, fishing fleets/gears and other human activities (Greenan et al., 2019; Pinsky & Fogarty, 2012; Young et al., 2019). 
The immigration/emigration of species into local areas can lead to substantial changes in community structure and diversity, 
and may lead other species to outcompete or be outcompeted. By monitoring not only commercial species, but the entire com-
munity—as is generally possible with bottom trawl surveys—we can understand ecological changes and inform the conservation 
of vulnerable species (Pinsky et al., 2020; Scheffers & Pecl, 2019).

2.	Management and cooperation
a.	 International agreements. All parties must create a management agreement for the regulation of the resource that is legally bind-

ing, regardless of how the distribution or abundance of the resource might change or not change in the future. Policies could be 
developed within the agreement to adjust regulations depending on a range of future scenarios such as when stocks move pole-
ward, or decrease/increase in abundance. Preagreements covering a range of options can help reduce future conflicts and reduce 
the need to renegotiate or abandon the agreement (Hilborn et al., 2001). An important goal of the management agreement is to 
acknowledge that changes are likely to occur, while recognizing that the specific change is likely unpredictable.

b.	Transboundary cooperation. In the case of transboundary species and distribution over multiple management areas, changes in 
spatial distribution under climate change and variability may favor/exclude countries or regions (Golden et  al.,  2016; Oremus 
et al., 2020). Therefore, some areas will “win” or “lose” and create conflicts and/or lead to species overexploitation (Mendenhall 
et al., 2020; Pinsky et al., 2018). Building agreements among countries to share resources equitably—or compensate when not 
possible—is necessary to ensure the sustainability of resources and the dependent human communities (Miller & Munro, 2004). It 
is essential that all parties perceive benefit from cooperating and remaining within the agreement. In the case of non-exploited/
non-targeted species, cooperative conservation actions should be established. Such cooperation can only be built with open and 
transparent science (Box 1) to conserve the species and avoid conflicts.

c.	 Regulation and enforcement. To truly implement transboundary management and conservation, the involved parties must develop a 
method to enforce their agreement. Effective monitoring to gather information on the shared resource and to measure compliance 
is important. Compensation and/or penalties may also be involved to ensure all parties adhere to the regulations. Side payments 
are one means of compensation that can take different forms (Miller & Munro, 2004). Direct cash payments are possible, however 
countries can also share monitoring and research capacity across international boundaries as is done for a number of stocks that 
straddle Canadian and United States waters (Miller & Munro, 2004). Nations can allow other nations to fish for a specific shared 
resource in their EEZ as is done between Norway and Russia (FAO, 2002; Hønneland, 2014) or swap quota in a multispecies fish-
ery as has been done in the Baltic Sea (Ranke, 2003). Once again, the goal is to develop an agreement in which all parties perceive 
benefits to properly manage shared stocks.
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into political decisions (for instance, in the case of fisheries quotas 
policy). We developed a framework (Box  2) where scientifically 
supported transboundary governance will avoid overexploitation, 
conflicts about newly or historically shared resources, and conser-
vation of vulnerable species. Global research efforts (as in this study) 
can be further developed to identify vulnerable species, for instance 
by applying a trait-based approach (Albouy et  al.,  2020; Payne 
et al., 2020). Identifying vulnerable relocating or shifting species and 
building the capacity for adaptation can both aid responsive and ef-
ficient governance of species affected by climate change.

5  | MAINTAINING SURVE YS TO FACE 
FUTURE CHALLENGES IN THE OCE ANS

Regular trawl surveys do not cover the entire continental shelves 
and the lack of monitoring makes it problematic to track ecosystem 
change and adapt management and policy to shifting resources. 
Additional sources of information could be considered to better 
cover demersal species habitats. Such sources could include fishery- 
dependent data (such as observer, landings, vessel report trip data) that 
are able to report species occurrences and in some cases catch-per- 
unit-effort. Data derived from the fisheries industry have the po-
tential to: (a) indicate the presence and abundance of species where 
scientific surveys are not conducted (Hilborn & Walters, 2013); (b) 
derive abundance estimates and spatial coverage by combining fish-
ery-dependent and fishery-independent data (Nielsen et al., 2019; 
Pennino et  al.,  2016; Pinto et  al.,  2018); (c) provide global infor-
mation on marine species from all types of habitats (for instance, 
http://www.seaar​oundus.org/, used in Pinsky et al., 2018 or Watson, 
2017); (d) understand socio-ecological fisheries systems under shift-
ing resources (Greenan et al., 2019; Pinsky & Fogarty, 2012; Young 
et al., 2019). Other promising sources of data could be derived from 
environmental DNA (eDNA; Pikitch, 2018; Salter et al., 2019). eDNA 
is a non-invasive and cost-efficient tool that can adequately detect 
the presence of fish in bottom waters, notably rare ones, and can po-
tentially estimate relative fish abundances (Afzali et al., 2020; Russo 
et al., 2020; Salter et al., 2019). This powerful tool is, however, still 
in its infancy and further development is needed to standardize it 
against bottom trawl catches before wide implementation (Garlapati 
et  al.,  2019). In addition, citizen science initiatives reporting spe-
cies observed well outside their typical geographic ranges (e.g., 
the Range Extension Database and Mapping project; Redmap [Pecl 
et  al.,  2019] https://www.redmap.org.au/ and the European Alien 
Species Information; EASIN [Schade et al., 2019]; https://easin.jrc.
ec.europa.eu/easin), also add valuable evidence of species range 
shifts in poorly sampled areas.

Surveys are highly valuable for following marine species redis-
tribution and biodiversity change, but maintaining surveys in a con-
sistent way through time is a challenge as they are costly. However, 
ecological time series become more informative the longer their 
timespan, highlighting the need to maintain long-term monitor-
ing programs (Hughes et al., 2017; Schindler & Hilborn, 2015). The 

existence of international programs such as the Nansen program 
(http://www.fao.org/in-actio​n/eaf-nanse​n/en/) is valuable to inform 
ecosystem-based management (Bianchi et al., 2000, 2016) and could 
be expanded. Surveys impact seafloor habitat, benthic communities, 
and sampled fish (Trenkel et  al.,  2019) and we should ensure that 
this kind of monitoring benefits science as much as possible. Surveys 
must be designed to be as efficient as possible by sharing (meta)
data, providing opportunities for innovative uses of the data and im-
proving the economic and ecological efficiency of monitoring. In any 
case, challenges of sampling marine communities and sharing data 
need to be overcome to allow scientific assessment and adequate 
management of shifting marine resources.

6  | CONCLUSION

The concentration of marine studies in the northern hemisphere 
profoundly limits not only our ability to track and understand cli-
mate change effects and species range shifts, but also our capacity 
to adapt, mitigate or avoid potential conflicts and socio-economic 
consequences that follow. This is particularly important in parts of 
the developing world where fisheries constitute a primary source 
of food and livelihood for coastal communities, but information 
supporting management is often scarce or non-existent. To allevi-
ate these issues, a coherent framework to monitor, understand, and 
inform sound and scientifically underpinned management actions to 
adapt to species range shifts is needed. Our study provides a first 
step towards creating such a framework by conducting a joint and 
internationally coordinated synthesis of the global coverage and 
availability of survey data, and it will be of great assistance to vari-
ous users aiming to assess and predict the response of marine bio-
diversity to climate change. Our study has identified important gaps 
in data availability and accessibility, and suggested ways to make the 
best use of surveys at hand by combining data from multiple sources 
to assess species redistributions over multiple management areas. 
We make a general plea for open science as well as fair and transpar-
ent sharing of data. This is needed to support scientific advice on 
coordinated spatial management actions, allowing us to adapt and 
prepare for the inevitable ecological and socio-economic conse-
quences of climate change yet to come.
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