60 research outputs found
ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflammasome Activation in Macrophages
Pathogen-activated and damage-associated molecular patterns activate the inflammasome in macrophages. We report that mouse macrophages release IL-1ÎČ while co-incubated with pro-B (Ba/F3) cells dying, as a result of IL-3 withdrawal, by apoptosis with autophagy, but not when they are co-incubated with living, apoptotic, necrotic or necrostatin-1 treated cells. NALP3-deficient macrophages display reduced IL-1ÎČ secretion, which is also inhibited in macrophages deficient in caspase-1 or pre-treated with its inhibitor. This finding demonstrates that the inflammasome is activated during phagocytosis of dying autophagic cells. We show that activation of NALP3 depends on phagocytosis of dying cells, ATP release through pannexin-1 channels of dying autophagic cells, P2X7 purinergic receptor activation, and on consequent potassium efflux. Dying autophagic Ba/F3 cells injected intraperitoneally in mice recruit neutrophils and thereby induce acute inflammation. These findings demonstrate that NALP3 performs key upstream functions in inflammasome activation in mouse macrophages engulfing dying autophagic cells, and that these functions lead to pro-inflammatory responses
Multi-Level Communication of Human Retinal Pigment Epithelial Cells via Tunneling Nanotubes
Background: Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis. Methodology and Principal Findings: Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 ”m. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells. Conclusions and Significance: Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic
Concanavalin A/IFN-Gamma Triggers Autophagy-Related Necrotic Hepatocyte Death through IRGM1-Mediated Lysosomal Membrane Disruption
Interferon-gamma (IFN-Îł), a potent Th1 cytokine with multiple biological functions, can induce autophagy to enhance the clearance of the invading microorganism or cause cell death. We have reported that Concanavalin A (Con A) can cause autophagic cell death in hepatocytes and induce both T cell-dependent and -independent acute hepatitis in immunocompetent and immunodeficient mice, respectively. Although IFN-Îł is known to enhance liver injury in Con A-induced hepatitis, its role in autophagy-related hepatocyte death is not clear. In this study we report that IFN-Îł can enhance Con A-induced autophagic flux and cell death in hepatoma cell lines. A necrotic cell death with increased lysosomal membrane permeabilization (LMP) is observed in Con A-treated hepatoma cells in the presence of IFN-Îł. Cathepsin B and L were released from lysosomes to cause cell death. Furthermore, IFN-Îł induces immunity related GTPase family M member 1(IRGM1) translocation to lysosomes and prolongs its activity in Con A-treated hepatoma cells. Knockdown of IRGM1 inhibits the IFN-Îł/Con A-induced LMP change and cell death. Furthermore, IFN-Îłâ/â mice are resistant to Con A-induced autophagy-associated necrotic hepatocyte death. We conclude that IFN-Îł enhances Con A-induced autophagic flux and causes an IRGM1-dependent lysosome-mediated necrotic cell death in hepatocytes
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases
Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases
Redox (phospho)lipidomics of signaling in inflammation and programmed cell death
In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA(3) and LTB4, by an iPLA(2)gamma inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions
- âŠ