863 research outputs found

    Quantum interference in nanofractals and its optical manifestation

    Full text link
    We consider quantum interferences of ballistic electrons propagating inside fractal structures with nanometric size of their arms. We use a scaling argument to calculate the density of states of free electrons confined in a simple model fractal. We show how the fractal dimension governs the density of states and optical properties of fractal structures in the RF-IR region. We discuss the effect of disorder on the density of states along with the possibility of experimental observation.Comment: 19 pages, 6 figure

    Casimir Dispersion Forces and Orientational Pairwise Additivity

    Full text link
    A path integral formulation is used to study the fluctuation-induced interactions between manifolds of arbitrary shape at large separations. It is shown that the form of the interactions crucially depends on the choice of the boundary condition. In particular, whether or not the Casimir interaction is pairwise additive is shown to depend on whether the ``metallic'' boundary condition corresponds to a ``grounded'' or an ``isolated'' manifold.Comment: 6 pages, RevTe

    pQCD Physics of multiparton interactions

    Full text link
    We study production of two pairs of jets in %hard hadron--hadron collisions in view of extracting contribution of {\em double hard interactions} of three and four partons (3→43\to4, 4→44\to4). Such interactions, in spite of being power suppressed at the level of the total cross section, become comparable with the standard hard collisions of two partons, 2→42\to4, in the {\em back-to-back kinematics} when the transverse momentum imbalances of two pairing jets are relatively small. We express differential and total cross sections for two-dijet production in double parton collisions through the generalized two-parton distributions, 2_2GPDs \cite{BDFS1}, that contain large-distance two-parton correlations of non-perturbative origin as well as small-distance correlations due to parton evolution. We find that these large- and small-distance correlations participate in different manner in 4-jet production, and treat them in the leading logarithmic approximation of pQCD that resums collinear logarithms in all orders. A special emphasis is given to 3→43\to4 double hard interaction processes that occur as an interplay between large- and short-distance parton correlations and were not taken into consideration by approaches inspired by the parton model picture. We demonstrate that the 3→43\to4 mechanism, being of the same order in \as as the 4→44\to4 process, turns out to be {\em geometrically enhanced} compared to the latter and should contribute significantly to 4-jet production. The framework developed here takes into systematic consideration perturbative Q2Q^2 evolution of 2_2GPDs. It can be used as a basis for future analysis of NLO corrections to multi-parton interactions (MPI) at LHC and Tevatron colliders, in particular for improving evaluation of QCD backgrounds to new physics searches.Comment: 16 pages,4 figures Improved presentation; list of references reworked; qualitative estimate of the magnitude of different contributions in the beck-to- back region correcte

    Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs

    Get PDF
    We introduce a nonperturbative interaction for light-cone fluctuations containing quarks and gluons. The qˉq\bar qq interaction squeezes the transverse size of these fluctuations in the photon and one does not need to simulate this effect via effective quark masses. The strength of this interaction is fixed by data. Data on diffractive dissociation of hadrons and photons show that the nonperturbative interaction of gluons is much stronger. We fix the parameters for the nonperturbative quark-gluon interaction by data for diffractive dissociation to large masses (triple-Pomeron regime). This allows us to predict nuclear shadowing for gluons which turns out to be not as strong as perturbative QCD predicts. We expect a delayed onset of gluon shadowing at x≀10−2x \leq 10^{-2} shadowing of quarks. Gluon shadowing turns out to be nearly scale invariant up to virtualities Q2∌4GeV2Q^2\sim 4 GeV^2 due to presence of a semihard scale characterizing the strong nonperturbative interaction of gluons. We use the same concept to improve our description of gluon bremsstrahlung which is related to the distribution function for a quark-gluon fluctuation and the interaction cross section of a qˉqG\bar qqG fluctuation with a nucleon. We expect the nonperturbative interaction to suppress dramatically the gluon radiation at small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and Fig. 6 are added as well as a few reference

    Baryon Operators of Higher Twist in QCD and Nucleon Distribution Amplitudes

    Get PDF
    We develop a general theoretical framework for the description of higher-twist baryon operators which makes maximal use of the conformal symmetry of the QCD Lagrangian. The conformal operator basis is constructed for all twists. The complete analysis of the one-loop renormalization of twist-4 operators is given. The evolution equation for three-quark operators of the same chirality turns out to be completely integrable. The spectrum of anomalous dimensions coincides in this case with the energy spectrum of the twist-4 subsector of the SU(2,2) Heisenberg spin chain. The results are applied to give a general classification and calculate the scale dependence of subleading twist-4 nucleon distribution amplitudes that are relevant for hard exclusive reactions involving a helicity flip. In particular we find an all-order expression (in conformal spin) for the contributions of geometric twist-3 operators to the (light-cone) twist-4 nucleon distribution amplitudes, which are usually referred to as Wandzura-Wilczek terms.Comment: 60 pages, 6 figures, pdflatex, typos correcte

    Multiple Interactions and the Structure of Beam Remnants

    Full text link
    Recent experimental data have established some of the basic features of multiple interactions in hadron-hadron collisions. The emphasis is therefore now shifting, to one of exploring more detailed aspects. Starting from a brief review of the current situation, a next-generation model is developed, wherein a detailed account is given of correlated flavour, colour, longitudinal and transverse momentum distributions, encompassing both the partons initiating perturbative interactions and the partons left in the beam remnants. Some of the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore