863 research outputs found
Quantum interference in nanofractals and its optical manifestation
We consider quantum interferences of ballistic electrons propagating inside
fractal structures with nanometric size of their arms. We use a scaling
argument to calculate the density of states of free electrons confined in a
simple model fractal. We show how the fractal dimension governs the density of
states and optical properties of fractal structures in the RF-IR region. We
discuss the effect of disorder on the density of states along with the
possibility of experimental observation.Comment: 19 pages, 6 figure
Casimir Dispersion Forces and Orientational Pairwise Additivity
A path integral formulation is used to study the fluctuation-induced
interactions between manifolds of arbitrary shape at large separations. It is
shown that the form of the interactions crucially depends on the choice of the
boundary condition. In particular, whether or not the Casimir interaction is
pairwise additive is shown to depend on whether the ``metallic'' boundary
condition corresponds to a ``grounded'' or an ``isolated'' manifold.Comment: 6 pages, RevTe
pQCD Physics of multiparton interactions
We study production of two pairs of jets in %hard hadron--hadron collisions
in view of extracting contribution of {\em double hard interactions} of three
and four partons (, ). Such interactions, in spite of being power
suppressed at the level of the total cross section, become comparable with the
standard hard collisions of two partons, , in the {\em back-to-back
kinematics} when the transverse momentum imbalances of two pairing jets are
relatively small.
We express differential and total cross sections for two-dijet production in
double parton collisions through the generalized two-parton distributions,
GPDs \cite{BDFS1}, that contain large-distance two-parton correlations of
non-perturbative origin as well as small-distance correlations due to parton
evolution. We find that these large- and small-distance correlations
participate in different manner in 4-jet production, and treat them in the
leading logarithmic approximation of pQCD that resums collinear logarithms in
all orders.
A special emphasis is given to double hard interaction processes that
occur as an interplay between large- and short-distance parton correlations and
were not taken into consideration by approaches inspired by the parton model
picture. We demonstrate that the mechanism, being of the same order in
\as as the process, turns out to be {\em geometrically enhanced}
compared to the latter and should contribute significantly to 4-jet production.
The framework developed here takes into systematic consideration perturbative
evolution of GPDs. It can be used as a basis for future analysis of
NLO corrections to multi-parton interactions (MPI) at LHC and Tevatron
colliders, in particular for improving evaluation of QCD backgrounds to new
physics searches.Comment: 16 pages,4 figures Improved presentation; list of references
reworked; qualitative estimate of the magnitude of different contributions in
the beck-to- back region correcte
Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs
We introduce a nonperturbative interaction for light-cone fluctuations
containing quarks and gluons. The interaction squeezes the transverse
size of these fluctuations in the photon and one does not need to simulate this
effect via effective quark masses. The strength of this interaction is fixed by
data. Data on diffractive dissociation of hadrons and photons show that the
nonperturbative interaction of gluons is much stronger. We fix the parameters
for the nonperturbative quark-gluon interaction by data for diffractive
dissociation to large masses (triple-Pomeron regime). This allows us to predict
nuclear shadowing for gluons which turns out to be not as strong as
perturbative QCD predicts. We expect a delayed onset of gluon shadowing at shadowing of quarks. Gluon shadowing turns out to be nearly scale
invariant up to virtualities due to presence of a semihard
scale characterizing the strong nonperturbative interaction of gluons. We use
the same concept to improve our description of gluon bremsstrahlung which is
related to the distribution function for a quark-gluon fluctuation and the
interaction cross section of a fluctuation with a nucleon. We expect
the nonperturbative interaction to suppress dramatically the gluon radiation at
small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and
Fig. 6 are added as well as a few reference
Baryon Operators of Higher Twist in QCD and Nucleon Distribution Amplitudes
We develop a general theoretical framework for the description of
higher-twist baryon operators which makes maximal use of the conformal symmetry
of the QCD Lagrangian. The conformal operator basis is constructed for all
twists. The complete analysis of the one-loop renormalization of twist-4
operators is given. The evolution equation for three-quark operators of the
same chirality turns out to be completely integrable. The spectrum of anomalous
dimensions coincides in this case with the energy spectrum of the twist-4
subsector of the SU(2,2) Heisenberg spin chain. The results are applied to give
a general classification and calculate the scale dependence of subleading
twist-4 nucleon distribution amplitudes that are relevant for hard exclusive
reactions involving a helicity flip. In particular we find an all-order
expression (in conformal spin) for the contributions of geometric twist-3
operators to the (light-cone) twist-4 nucleon distribution amplitudes, which
are usually referred to as Wandzura-Wilczek terms.Comment: 60 pages, 6 figures, pdflatex, typos correcte
Multiple Interactions and the Structure of Beam Remnants
Recent experimental data have established some of the basic features of
multiple interactions in hadron-hadron collisions. The emphasis is therefore
now shifting, to one of exploring more detailed aspects. Starting from a brief
review of the current situation, a next-generation model is developed, wherein
a detailed account is given of correlated flavour, colour, longitudinal and
transverse momentum distributions, encompassing both the partons initiating
perturbative interactions and the partons left in the beam remnants. Some of
the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ