120 research outputs found

    A systematic review of the use of the Satiety Quotient

    Get PDF
    The satiating efficiency of food has been increasingly quantified using the Satiety Quotient (SQ). The SQ integrates both the energy content of food ingested during a meal and the associated change in appetite sensations. This systematic review examines the available evidence regarding its methodological use and clinical utility. A literature search was conducted in 6 databases considering studies from 1900 to April 2020 that used SQ in adults, adolescents and children. All study designs were included. From the initial 495 references found, 52 were included. Of the studies included, 33 were acute studies (29 in adults and 4 in adolescents) and 19 were longitudinal studies in adults. A high methodological heterogeneity in the application of the SQ was observed between studies. Five main utilizations of the SQ were identified: its association with i) energy intake; ii) anthropometric variables; iii) energy expenditure/physical activity; iv) sleep quality and quantity; as well as v) to classify individuals by their satiety responsiveness (i.e. low and high satiety phenotypes). Altogether, the studies suggest the SQ as an interesting clinical tool regarding the satiety responsiveness to a meal and its changes in responses to weight loss in adults. The SQ might be a reliable clinical indicator in adults when it comes to both obesity prevention and treatment. There is a need for more standardized use of the SQ in addition to further studies to investigate its validity in different contexts and populations, especially among children and adolescents

    Delayed meal timing after exercise is associated with reduced appetite and energy intake in adolescents with obesity

    Get PDF
    Background While the beneficial effects of exercise on appetite might depend on its timing during the day or relative to a meal, this remains poorly explored in youth. Objectives To examine the importance of meal timing (+30 vs +90 minutes) after performing exercise on energy intake, appetite and food reward in adolescents with obesity. Methods Eighteen adolescents with obesity randomly completed three conditions: (a) lunch (12:00 pm) set 30 minutes after a rest session (11:00 am); (b) lunch (12:00 pm) set 30 minutes after an exercise session (11:00 am)(MEAL‐30); (c) lunch (01:00 pm) set 90 minutes after an exercise session (11:00 am)(MEAL‐90). Lunch and dinner ad libitum energy intake was assessed, food reward (LFPQ) assessed before and after lunch, and before dinner, appetite sensations were assessed at regular intervals. Results Energy intake was lower at MEAL‐90 than MEAL‐30 and CON at lunch (P < .05 and P < .01, respectively) and lunch + dinner combined (P < .001). A decrease in intake (g) of protein, fat and carbohydrate was observed. Post‐exercise hunger was lower on MEAL‐90 compared with CON. No condition effects were found at lunch for food reward. Conclusions Delaying the timing of the meal after exercise might help affect energy balance by decreasing ad libitum energy intake without increasing hunger and by improving satiety in adolescents with obesity

    Does exercising before or after a meal affect energy balance in adolescents with obesity?

    Get PDF
    Background and aim Exercise timing has been suggested to affect appetite and energy intake (EI). The aim of this study was to examine the impact of exercising immediately before or after a meal on EI, appetite sensations and food reward (FR) in adolescents with obesity. Methods and results Seventeen adolescents with obesity completed 3 experimental sessions (randomized controlled trial): rest + lunch (CON); exercise + lunch (EX-MEAL); lunch + exercise (MEAL-EX). The exercise consisted of cycling 30 min at 65%V̇O2peak. Outcomes included ad libitum EI (weighed lunch and dinner), FR (Leeds Food Preference Questionnaire at pre- and post-combination of exercise/rest and lunch, and pre-dinner) and appetite sensations (visual analogue scales). EI was not different between conditions. Compared with CON, relative EI at lunch was lower in EX-MEAL and MEAL-EX (p ≤ 0.05) and daily only in MEAL-EX (p < 0.01). Postprandial fullness was higher in EX-MEAL compared to CON. Compared with CON, both EX-MEAL and MEAL-EX attenuated the increase in wanting for sweet food and reduced explicit liking for fat. Conclusions These preliminary results suggest that exercising immediately before or after a meal produce few differences in appetite and have small beneficial effects on overall energy balance in adolescents with obesity, as well as on FR. Clinical trials NCT03967782

    The association of cardioprotective medications with pneumonia-related outcomes

    Get PDF
    Introduction: Little research has examined whether cardiovascular medications, other than statins, are associated with improved outcomes after pneumonia. Our aim was to examine the association between the use of beta-blockers, statins, angiotensin converting enzyme (ACE) inhibitors, and angiotensin II receptor blockers (ARBs) with pneumonia-related outcomes. Materials and Methods: We conducted a retrospective population-based study on male patients ≥65 years of age hospitalized with pneumonia and who did not have pre-existing cardiac disease. Our primary analyses were multilevel regression models that examined the association between cardiovascular medication classes and either mortality or cardiovascular events. Results: Our cohort included 21,985 patients: 22% died within 90 days of admission, and 22% had a cardiac event within 90 days. The cardiovascular medications studied that were associated with decreased 90-day mortality included: statins (OR 0.70, 95% CI 0.63-0.77), ACE inhibitors (OR 0.82, 95% CI 0.74-0.91), and ARBs (OR 0.58, 95% CI 0.44-0.77). However, none of the medications were significantly associated with decreased cardiovascular events. Discussion: While statins, ACE inhibitors, and ARBs, were associated with decreased mortality, there was no significant association with decreased CV events. These results indicate that this decreased mortality is unlikely due to their potential cardioprotective effects

    Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.</p> <p>Results</p> <p>More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.</p> <p>Conclusion</p> <p>We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.</p

    Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection

    Get PDF
    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides

    Get PDF
    corecore