2,227 research outputs found
Recommended from our members
Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?
This work was supported by National Institute of Biomedical Imaging and Bioengineering Grant No. U54EB020403 (to the ENIGMA consortium)
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both
Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population
X-ray polarimetry of the accreting pulsar GX 301-2
The phase- and energy-resolved polarization measurements of accreting X-ray
pulsars (XRPs) allow us to test different theoretical models of their emission,
as well as to provide an avenue to determine the emission region geometry. We
present the results of the observations of the XRP GX 301-2 performed with the
Imaging X-ray Polarimetry Explorer (IXPE). GX 301-2 is a persistent XRP with
one of the longest known spin periods of ~680 s. A massive hyper-giant
companion star Wray 977 supplies mass to the neutron star via powerful stellar
winds. We do not detect significant polarization in the phase-averaged data
using spectro-polarimetric analysis, with the upper limit on the polarization
degree (PD) of 2.3% (99% confidence level). Using the phase-resolved
spectro-polarimetric analysis we get a significant detection of polarization
(above 99% c.l.) in two out of nine phase bins and marginal detection in three
bins, with a PD ranging between ~3% and ~10%, and a polarization angle varying
in a very wide range from ~0 deg to ~160 deg. Using the rotating vector model
we obtain constraints on the pulsar geometry using both phase-binned and
unbinned analysis getting excellent agreement. Finally, we discuss possible
reasons for a low observed polarization in GX 301-2.Comment: 10 pages, 10 figures, submitted to A&
A polarimetrically oriented X-ray stare at the accreting pulsar EXO 2030+375
Accreting X-ray pulsars (XRPs) are presumably ideal targets for polarization
measurements, as their high magnetic field strength is expected to polarize the
emission up to a polarization degree of ~80%. However, such expectations are
being challenged by recent observations of XRPs with the Imaging X-ray
Polarimeter Explorer (IXPE). Here we report on the results of yet another XRP,
EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT
and SRG/ART-XC. In line with recent results obtained with IXPE for similar
sources, analysis of the EXO 2030+375 data returns a low polarization degree of
0%-3% in the phase-averaged study and variation in the range 2%-7% in the
phase-resolved study. Using the rotating vector model we constrain the geometry
of the system and obtain a value for the magnetic obliquity of ~.
Considering also the estimated pulsar inclination of ~, this
indicates that the magnetic axis swings close to the observer line of sight.
Our joint polarimetric, spectral and timing analysis hint to a complex
accreting geometry where magnetic multipoles with asymmetric topology and
gravitational light bending significantly affect the observed source behavior.Comment: A&A accepted. Proofs versio
IXPE Observations of the Quintessential Wind-accreting X-Ray Pulsar Vela X-1
The radiation from accreting X-ray pulsars was expected to be highly polarized, with some estimates for the polarization degree of up to 80%. However, phase-resolved and energy-resolved polarimetry of X-ray pulsars is required in order to test different models and to shed light on the emission processes and the geometry of the emission region. Here we present the first results of the observations of the accreting X-ray pulsar Vela X-1 performed with the Imaging X-ray Polarimetry Explorer. Vela X-1 is considered to be the archetypal example of a wind-accreting, high-mass X-ray binary system, consisting of a highly magnetized neutron star accreting matter from its supergiant stellar companion. The spectropolarimetric analysis of the phase-averaged data for Vela X-1 reveals a polarization degree (PD) of 2.3% ± 0.4% at the polarization angle (PA) of −47.°3 ± 5.°4. A low PD is consistent with the results obtained for other X-ray pulsars and is likely related to the inverse temperature structure of the neutron star atmosphere. The energy-resolved analysis shows the PD above 5 keV reaching 6%–10% and a ∼90° difference in the PA compared to the data in the 2–3 keV range. The phase-resolved spectropolarimetric analysis finds a PD in the range 0%–9% with the PA varying between −80° and 40°
Polarized blazar X-rays imply particle acceleration in shocks
Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1,2,3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock
X-ray Polarization Observations of BL Lacertae
Blazars are a class of jet-dominated active galactic nuclei with a typical
double-humped spectral energy distribution. It is of common consensus the
Synchrotron emission to be responsible for the low frequency peak, while the
origin of the high frequency hump is still debated. The analysis of X-rays and
their polarization can provide a valuable tool to understand the physical
mechanisms responsible for the origin of high-energy emission of blazars. We
report the first observations of BL Lacertae performed with the Imaging X-ray
Polarimetry Explorer ({IXPE}), from which an upper limit to the polarization
degree 12.6\% was found in the 2-8 keV band. We contemporaneously
measured the polarization in radio, infrared, and optical wavelengths. Our
multiwavelength polarization analysis disfavors a significant contribution of
proton synchrotron radiation to the X-ray emission at these epochs. Instead, it
supports a leptonic origin for the X-ray emission in BL Lac.Comment: 17 pages, 5 figures, accepted for publication in ApJ
Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy
IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical
attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced
colorectal cancers at diagnosis.
OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced
oncologic stage and change in clinical presentation for patients with colorectal cancer.
DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all
17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December
31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period),
in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was
30 days from surgery.
EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery,
palliative procedures, and atypical or segmental resections.
MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer
at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as
cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding,
lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery,
and palliative surgery. The independent association between the pandemic period and the outcomes
was assessed using multivariate random-effects logistic regression, with hospital as the cluster
variable.
RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years)
underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142
(56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was
significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR],
1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic
lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03).
CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the
SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients
undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for
these patients
Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium
BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group.
METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide.
RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset.
CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia
- …