1,373 research outputs found
Recommended from our members
New insights into the role of mitochondrial calcium homeostasis in cell migration
Mitochondria are dynamic organelles involved in numerous physiological functions. Beyond their function in ATP production, mitochondria regulate cell death, reactive oxygen species (ROS) generation, immunity and metabolism. Mitochondria also play a key role in the buffering of cytosolic calcium, and calcium transported into the matrix regulates mitochondrial metabolism. Recently, the identification of the mitochondrial calcium uniporter (MCU) and associated regulators has allowed the characterization of new physiological roles for calcium in both mitochondrial and cellular homeostasis. Indeed, recent work has highlighted the importance of mitochondrial calcium homeostasis in regulating cell migration. Cell migration is a property common to all metazoans and is critical to embryogenesis, cancer progression, wound-healing and immune surveillance. Previous work has established that cytoplasmic calcium is a key regulator of cell migration, as oscillations in cytosolic calcium activate cytoskeletal remodelling, actin contraction and focal adhesion (FA) turnover necessary for cell movement. Recent work using animal models and experiments to genetically modulate MCU and partners have shed new light on the role of mitochondrial calcium dynamics in cytoskeletal remodelling through the modulation of ATP and ROS production, as well as intracellular calcium signalling. This review focuses on MCU and its regulators in cell migration during physiological and pathophysiological processes including development and cancer. We also present hypotheses to explain the molecular mechanisms by which MCU may regulate mitochondrial dynamics and motility to drive cell migration.This work was supported by the Medical Research Council, UK (MC_UP_1601/1). V.P. is supported by a Medical Research Council postdoctoral fellowship
Impact of a fracture liaison service on patient management after an osteoporotic fracture: the CHUV FLS.
In 2008, the Centre Hospitalier Universitaire Vaudois (CHUV, Lausanne, Switzerland) initiated a Fracture Liaison Service (FLS). All patients hospitalised for a low trauma fracture are identified by the FLS. Inpatients then choose to be managed by either the FLS team or their general practitioner (GP). In this study we compared the management between the FLS team and the GP in terms of diagnosis of osteoporosis, treatment, refracture rates and mortality after FLS recording. Results are compared with the management of osteoporosis before the creation of the FLS, as reported in the survey study Osteocare. A total of 606 patients were included (80% women); 55% chose management by the FLS and 45% their GP. The mean age was 78.5, and hip was the main fracture site (44%). The percentage of patients having dual X-ray absorptiometry to diagnose osteoporosis was significantly higher in the FLS group than the GP group (72 vs 26.5%, p <0.01). This percentage was 31.4% in the Osteocare study. Overall, 50.3% of patients in the FLS group had osteoporosis versus 57.5% in the GP group (p <0.05). This percentage was 46.0% in the Osteocare study. Use of osteoporosis medication was higher in the FLS group (FLS 100% of the patients, GP 44.1%, p <0.001) and had increased since the Osteocare study (21.6%). One-year nonvertebral refracture rate was higher in GP group than in the FLS patients (5.1 vs 3.0%, p <0.05), whereas more vertebral fractures were identified in the FLS group, owing to protocol-driven regular clinical and vertebral fracture assessment (VFA) evaluations (number of evaluations 8 vs 0, p <0.01). Unadjusted mortality was higher in GP group than in the FLS group at one and five years (6.93 vs 2.11% and 33.58 vs. 15.96%, p <0.04). After adjustment by age and fracture site, these results were not significant. With FLS management, diagnosis and treatment of osteoporosis were more frequent than with GP management; new nonvertebral fractures were less frequent. Moreover, both forms of management had increased relative to rates reported in a 2004-2006 nationwide survey Osteocare, before FLS creation
Optimizing CIGB-300 intralesional delivery in locally advanced cervical cancer
Background:We conducted a phase 1 trial in patients with locally advanced cervical cancer by injecting 0.5 ml of the CK2-antagonist CIGB-300 in two different sites on tumours to assess tumour uptake, safety, pharmacodynamic activity and identify the recommended dose.Methods:Fourteen patients were treated with intralesional injections containing 35 or 70 mg of CIGB-300 in three alternate cycles of three consecutive days each before standard chemoradiotherapy. Tumour uptake was determined using 99 Tc-radiolabelled peptide. In situ B23/nucleophosmin was determined by immunohistochemistry.Results:Maximum tumour uptake for CIGB-300 70-mg dose was significantly higher than the one observed for 35 mg: 16.1±8.9 vs 31.3±12.9 mg (P=0.01). Both, AUC 24h and biological half-life were also significantly higher using 70 mg of CIGB-300 (P<0.001). Unincorporated CIGB-300 diffused rapidly to blood and was mainly distributed towards kidneys, and marginally in liver, lungs, heart and spleen. There was no DLT and moderate allergic-like reactions were the most common systemic side effect with strong correlation between unincorporated CIGB-300 and histamine levels in blood. CIGB-300, 70 mg, downregulated B23/nucleophosmin (P=0.03) in tumour specimens.Conclusion:Intralesional injections of 70 mg CIGB-300 in two sites (0.5 ml per injection) and this treatment plan are recommended to be evaluated in phase 2 studies.Fil: Sarduy, M. R.. Medical-surgical Research Center; CubaFil: GarcĂa, I.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: Coca, M. A.. Clinical Investigation Center; CubaFil: Perera, A.. Clinical Investigation Center; CubaFil: Torres, L. A.. Clinical Investigation Center; CubaFil: Valenzuela, C. M.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: BaladrĂłn, I.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: Solares, M.. Hospital Materno RamĂłn GonzĂĄlez Coro; CubaFil: Reyes, V.. Center For Genetic Engineering And Biotechnology Havana; CubaFil: HernĂĄndez, I.. Isotope Center; CubaFil: Perera, Y.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: MartĂnez, Y. M.. Medical-surgical Research Center; CubaFil: Molina, L.. Medical-surgical Research Center; CubaFil: GonzĂĄlez, Y. M.. Medical-surgical Research Center; CubaFil: AncĂzar, J. A.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: Prats, A.. Clinical Investigation Center; CubaFil: GonzĂĄlez, L.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: CasacĂł, C. A.. Clinical Investigation Center; CubaFil: Acevedo, B. E.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: LĂłpez Saura, P. A.. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; CubaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; ArgentinaFil: GĂłmez, R.. Elea Laboratories; ArgentinaFil: Perea RodrĂguez, S. E.. Center For Genetic Engineering And Biotechnology Havana; Cuba. Centro de IngenierĂa GenĂ©tica y BiotecnologĂa; Cub
AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology
Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.</p
Mutation in the MICOS subunit gene APOO (MIC26) associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive impairment and autistic features
Background: Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the ⏠mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. Methods: We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. Results: A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. Conclusion: This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies
On the influence of the cosmological constant on gravitational lensing in small systems
The cosmological constant Lambda affects gravitational lensing phenomena. The
contribution of Lambda to the observable angular positions of multiple images
and to their amplification and time delay is here computed through a study in
the weak deflection limit of the equations of motion in the Schwarzschild-de
Sitter metric. Due to Lambda the unresolved images are slightly demagnified,
the radius of the Einstein ring decreases and the time delay increases. The
effect is however negligible for near lenses. In the case of null cosmological
constant, we provide some updated results on lensing by a Schwarzschild black
hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation,
references added, results unchanged, in press on PR
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fbâ1 of sâ=7TeV proton-proton collisions
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fbâ1 of pp collision data at sâ=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from â„6 to â„9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H âÎł Îł, H â Z Zâ â4l and H âW Wâ âlÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of âs = 7 TeV and âs = 8 TeV, corresponding to an integrated luminosity of about 25 fbâ1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
- âŠ