16 research outputs found

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Molecular epidemiology and evolutionary trajectory of emerging echovirus 30, Europe

    Get PDF
    In 2018, an upsurge in echovirus 30 (E30) infections was reported in Europe. We conducted a large-scale epidemiologic and evolutionary study of 1,329 E30 strains collected in 22 countries in Europe during 2016-2018. Most E30 cases affected persons 0-4 years of age (29%) and 25-34 years of age (27%). Sequences were divided into 6 genetic clades (G1-G6). Most (53%) sequences belonged to G1, followed by G6 (23%), G2 (17%), G4 (4%), G3 (0.3%), and G5 (0.2%). Each clade encompassed unique individual recombinant forms; G1 and G4 displayed >= 2 unique recombinant forms. Rapid turnover of new clades and recombinant forms occurred over time. Clades G1 and G6 dominated in 2018, suggesting the E30 upsurge was caused by emergence of 2 distinct clades circulating in Europe. Investigation into the mechanisms behind the rapid turnover of E30 is crucial for clarifying the epidemiology and evolution of these enterovirus infections.Molecular basis of virus replication, viral pathogenesis and antiviral strategie

    Dual rna-seq enables full-genome assembly of measles virus and characterization of host–pathogen interactions

    No full text
    Measles virus (MeV) has a negative-sense 15 kb long RNA genome, which is generally conserved. Recent advances in high-throughput sequencing (HTS) and Dual RNA-seq allow the analysis of viral RNA genomes and the discovery of viral infection biomarkers, via the simultaneous characterization of the host transcriptome. However, these host–pathogen interactions remain largely unexplored in MeV infections. We performed untargeted Dual RNA-seq in 6 pharyngeal and 6 peripheral blood mononuclear cell (PBMCs) specimens from patients with MeV infection, as confirmed via routine real-time PCR testing. Following optimised DNase treatment of total nucleic acids, we used the pharyngeal samples to build poly-A-enriched NGS libraries. We reconstructed the viral genomes using the pharyngeal datasets and we further conducted differential expression, gene-ontology and pathways enrichment analysis to compare both the pharyngeal and the peripheral blood transcriptomes of the MeV-infected patients vs. control groups of healthy individuals. We obtained 6 MeV genotype-B3 full-genome sequences. We minutely analyzed the transcriptome of the MeV-infected pharyngeal epithelium, detecting all known viral infection biomarkers, but also revealing a functional cluster of local antiviral and inflammatory immune responses, which differ substantially from those observed in the PBMCs transcriptome. The application of Dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the virus genome structure and the cellular innate immune responses and drive the discovery of new targets for antiviral therapy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    An unusual case of diffuse Merkel cell carcinoma successfully treated with low dose radiotherapy

    No full text
    Merkel cell carcinoma (MCC) is a rare and highly aggressive neuroendocrine carcinoma of the skin. MCC should be included in the diagnosis of a rapidly growing infiltrating mass and histology as well as laboratory investigations such as Merkel cell polyoma virus (MCPyV) detection are valuable in its diagnosis. We present an unusual case of giant MCC-positive MCPyV in a Greek woman located on the lower leg. Our patient is very unusual in terms of her extensive MCC and her rapid and complete response to radiotherapy. © 2015 Wiley Periodicals, Inc

    Spatiotemporal distribution and genetic characterization of measles strains circulating in greece during the 2017–2018 outbreak

    No full text
    Between May 2017 and November 2018, Greece has experienced a severe measles outbreak with a total of 3258 cases reported, after reaching its goal of eliminating measles since 2014–2015. In this study, we aimed to investigate the origin and the dispersal patterns of the measles strains that circulated in Greece during this outbreak and to identify possible transmission patterns of measles virus (MeV) in the country. Of the 832 measles suspect cases referred to the National Measles and Rubella Reference Laboratory for MeV RNA detection, 131 randomly selected positive samples, representative of the temporal and spatial distribution of the laboratory-confirmed measles cases in Greece, were processed for genotypic identification by an RT-PCR amplification of a 598 bp fragment containing the 450 bp hypervariable region of the measles virus N gene. Phylogenetic analysis was carried out by the approximate maximum likelihood method (ML) under the generalized time-reversible (GTR + cat) model. All samples analyzed were found to belong to genotype B3. Comparative analysis with other European and reference measles strains revealed three separate major clusters and other multiple viruses circulating simultaneously in Greece. They were all isolated from three main community groups, Greek-Roma children, non-minority Greek nationals and immigrants/refugees, a finding that is in accordance with what was also observed in the last two measles outbreaks in 2005–2006 and 2010–2011. Notably, for one of the three clusters, no similarity was detected with previously reported prototype strains. Our results indicate the need for a more intensive vaccination program against measles amongst minority populations and in refugee hot-spots as well as the importance of molecular surveillance as a tool for monitoring measles outbreaks. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008

    No full text
    Viruses are the major cause of pediatric respiratory tract infection and yet many suspected cases of illness remain uncharacterized. This study aimed to determine the distribution of several respiratory viruses in children diagnosed as having influenza-like illness, over the winter period of 2005-2008. Molecular assays including conventional and real time PCR protocols, were employed to screen respiratory specimens, collected by clinicians of the Influenza sentinel system and of outpatient pediatric clinics, for identification of several respiratory viruses. Of 1,272 specimens tested, 814 (64%) were positive for at least one virus and included 387 influenza viruses, 160 rhinoviruses, 155 respiratory syncytial viruses, 95 adenoviruses, 81 bocaviruses, 47 parainfluenza viruses, 44 metapneumoviruses, and 30 coronaviruses. Simultaneous presence of two or three viruses was observed in 173 of the above positive cases, 21% of which included influenza virus and rhinovirus. The majority of positive cases occurred during January and February. Influenza virus predominated in children older than 1 year old, with type B being the dominant type for the first season and subtypes A/H3N2 and A/H1N1 the following two winter seasons, respectively. Respiratory syncytial virus prevailed in children younger than 2 years old, with subtypes A and B alternating from year to year. This is the most comprehensive study of the epidemiology of respiratory viruses in Greece, indicating influenza, rhinovirus and respiratory syncytial virus as major contributors to influenza-like illness in children. J. Med. Virol. 83:1841-1848, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

    Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under prolonged treatment.

    No full text
    There was an increase in severe and fatal influenza cases in Greece during the 2011-2015 post-pandemic period. To investigate causality, we determined neuraminidase (NA) inhibitor susceptibility and resistance-conferring NA and hemagglutinin (HA) mutations in circulating influenza type A viruses during the pandemic (2009-2010) and post-pandemic periods in Greece. One hundred thirty-four influenza A(H1N1)pdm09 and 95 influenza A(H3N2) viruses submitted to the National Influenza Reference Laboratory of Southern Greece were tested for susceptibility to oseltamivir and zanamivir. Antiviral resistance was assessed by neuraminidase sequence analysis, as well as the fluorescence-based 50 % inhibitory concentration (IC50) method. Five influenza A(H1N1)pdm09 viruses (2.2 %) showed significantly reduced inhibition by oseltamivir (average IC50 300.60nM vs. 1.19nM) by Gaussian kernel density plot analysis. These viruses were isolated from immunocompromised patients and harbored the H275Y oseltamivir resistance-conferring NA substitution. All A(H1N1)pdm09 viruses were zanamivir-susceptible, and all A(H3N2) viruses were susceptible to both drugs. Oseltamivir-resistant viruses did not form a distinct cluster by phylogenetic analysis. Permissive mutations were detected in immunogenic and non immunogenic NA regions of both oseltamivir- resistant and susceptible viruses in the post-pandemic seasons. Several amino acid substitutions in the HA1 domain of the HA gene of post-pandemic viruses were identified. This study indicated low resistance to NAIs among tested influenza viruses. Antiviral resistance emerged only in immunocompromised patients under long-term oseltamivir treatment. Sequential sample testing in this vulnerable group of patients is recommended to characterise resistance or reinfection and viral evolution

    Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under prolonged treatment.

    No full text
    There was an increase in severe and fatal influenza cases in Greece during the 2011-2015 post-pandemic period. To investigate causality, we determined neuraminidase (NA) inhibitor susceptibility and resistance-conferring NA and hemagglutinin (HA) mutations in circulating influenza type A viruses during the pandemic (2009-2010) and post-pandemic periods in Greece. One hundred thirty-four influenza A(H1N1)pdm09 and 95 influenza A(H3N2) viruses submitted to the National Influenza Reference Laboratory of Southern Greece were tested for susceptibility to oseltamivir and zanamivir. Antiviral resistance was assessed by neuraminidase sequence analysis, as well as the fluorescence-based 50 % inhibitory concentration (IC50) method. Five influenza A(H1N1)pdm09 viruses (2.2 %) showed significantly reduced inhibition by oseltamivir (average IC50 300.60nM vs. 1.19nM) by Gaussian kernel density plot analysis. These viruses were isolated from immunocompromised patients and harbored the H275Y oseltamivir resistance-conferring NA substitution. All A(H1N1)pdm09 viruses were zanamivir-susceptible, and all A(H3N2) viruses were susceptible to both drugs. Oseltamivir-resistant viruses did not form a distinct cluster by phylogenetic analysis. Permissive mutations were detected in immunogenic and non immunogenic NA regions of both oseltamivir- resistant and susceptible viruses in the post-pandemic seasons. Several amino acid substitutions in the HA1 domain of the HA gene of post-pandemic viruses were identified. This study indicated low resistance to NAIs among tested influenza viruses. Antiviral resistance emerged only in immunocompromised patients under long-term oseltamivir treatment. Sequential sample testing in this vulnerable group of patients is recommended to characterise resistance or reinfection and viral evolution

    Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under prolonged treatment

    No full text
    There was an increase in severe and fatal influenza cases in Greece during the 2011-2015 post-pandemic period. To investigate causality, we determined neuraminidase (NA) inhibitor susceptibility and resistance-conferring NA and hemagglutinin (HA) mutations in circulating influenza type A viruses during the pandemic (2009-2010) and post-pandemic periods in Greece. One hundred thirty-four influenza A(H1N1)pdm09 and 95 influenza A(H3N2) viruses submitted to the National Influenza Reference Laboratory of Southern Greece were tested for susceptibility to oseltamivir and zanamivir. Antiviral resistance was assessed by neuraminidase sequence analysis, as well as the fluorescence-based 50 % inhibitory concentration (IC50) method. Five influenza A(H1N1)pdm09 viruses (2.2 %) showed significantly reduced inhibition by oseltamivir (average IC50 300.60nM vs. 1.19nM) by Gaussian kernel density plot analysis. These viruses were isolated from immunocompromised patients and harbored the H275Y oseltamivir resistance-conferring NA substitution. All A(H1N1)pdm09 viruses were zanamivir-susceptible, and all A(H3N2) viruses were susceptible to both drugs. Oseltamivir-resistant viruses did not form a distinct cluster by phylogenetic analysis. Permissive mutations were detected in immunogenic and non immunogenic NA regions of both oseltamivir- resistant and susceptible viruses in the post-pandemic seasons. Several amino acid substitutions in the HA1 domain of the HA gene of post-pandemic viruses were identified. This study indicated low resistance to NAIs among tested influenza viruses. Antiviral resistance emerged only in immunocompromised patients under long-term oseltamivir treatment. Sequential sample testing in this vulnerable group of patients is recommended to characterise resistance or reinfection and viral evolution
    corecore