317 research outputs found

    Complex transboundary movements of marine megafauna in the Western Indian Ocean

    Get PDF
    Transboundary marine species have an increased risk of overexploitation as management regimes and enforcement can vary among states. The complex geopolitical layout of exclusive economic zones (EEZs) in the Western Indian Ocean (WIO) introduces the potential for migratory species to cross multiple boundaries, consequently a lack of scientific data could complicate regional management. In the current study, we highlight both the relative lack of spatial data available in the WIO, and the prevalence of transboundary movements in species that have previously been studied in the region. Five tiger sharks Galeocerdo cuvier were tracked with near real‐time positioning (SPOT) satellite tags to determine individual shark movements relative to EEZs within the WIO. Concurrently, a literature search was performed to identify all satellite telemetry studies conducted to date in the WIO for marine megafaunal species, and the results compared to global satellite telemetry effort. Finally, the satellite tracks of all marine species monitored in the WIO were extracted and digitized to examine the scale of transboundary movements that occur in the region. Tiger sharks exhibited both coastal and oceanic movements, with one individual crossing a total of eight EEZs. Satellite telemetry effort in the WIO has not matched the global increase, with only 4.7% of global studies occurring in the region. Species in the WIO remained within the EEZ in which they were tagged in only three studies, while all other species demonstrated some level of transboundary movement. This study demonstrates the lack of spatial data available for informed regional management in an area where transboundary movements by marine megafauna are highly prevalent. Without more dedicated funding and research, the rich biodiversity of the WIO is at risk of overexploitation from the diverse threats present within the various political regions

    Blue consequences of the green bioeconomy : Clear‐cutting intensifies the harmful impacts of land drainage on stream invertebrate biodiversity

    Get PDF
    1. Growing bioeconomy is increasing the pressure to clear-cut drained peatland forests. Yet, the cumulative effects of peatland drainage and clear-cutting on the biodiversity of recipient freshwater ecosystems are largely unknown. 2. We studied the isolated and combined effects of peatland drainage and clear-cutting on stream macroinvertebrate communities. We further explored whether the impact of these forestry-driven catchment alterations to benthic invertebrates is related to stream size. We quantified the impact on invertebrate biodiversity by comparing communities in forestry-impacted streams to expected communities modelled with a multi-taxon niche model. 3. The impact of clear-cutting of drained peatland forests exceeded the sum of the independent effects of drainage and clear-cutting, indicating a synergistic interaction between the two disturbances in small streams. Peatland drainage reduced benthic biodiversity in both small and large streams, whereas clear-cutting did the same only in small streams. Small headwater streams were more sensitive to forestry impacts than the larger downstream sites. 4. We found 11 taxa (out of 25 modelled) to respond to forestry disturbances. These taxa were mainly different from those previously reported as sensitive to forestry-driven alterations, indicating the context dependence of taxonomic responses to forestry. In contrast, most of the functional traits previously identified as responsive to agricultural sedimentation also responded to forestry pressures. In particular, taxa that live temporarily in hyporheic habitats, move by crawling, disperse actively in water, live longer than 1 year, use eggs as resistance form and obtain their food by scraping became less abundant than expected, particularly in streams impacted by both drainage and clear-cutting. 5. Synthesis and applications. Drained peatland forests in boreal areas are reaching maturity and will soon be harvested. Clear-cutting of these forests incurs multiple environmental hazards but previous studies have focused on terrestrial ecosystems. Our results show that the combined impacts of peatland drainage and clear-cutting may extend across ecosystem boundaries and cause significant biodiversity loss in recipient freshwater ecosystems. This information supports a paradigm shift in boreal forest management, whereby continuous-cover forestry based on partial harvest may provide the most sustainable approach to peatland forestry

    When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil

    Get PDF
    Providing food and other products to a growing human population while safeguarding natural ecosystems and the provision of their services is a significant scientific, social and political challenge. With food demand likely to double over the next four decades, anthropization is already driving climate change and is the principal force behind species extinction, among other environmental impacts. The sustainable intensification of production on current agricultural lands has been suggested as a key solution to the competition for land between agriculture and natural ecosystems. However, few investigations have shown the extent to which these lands can meet projected demands while considering biophysical constraints. Here we investigate the improved use of existing agricultural lands and present insights into avoiding future competition for land. We focus on Brazil, a country projected to experience the largest increase in agricultural production over the next four decades and the richest nation in terrestrial carbon and biodiversity. Using various models and climatic datasets, we produced the first estimate of the carrying capacity of Brazil's 115 million hectares of cultivated pasturelands. We then investigated if the improved use of cultivated pasturelands would free enough land for the expansion of meat, crops, wood and biofuel, respecting biophysical constraints (i.e., terrain, climate) and including climate change impacts. We found that the current productivity of Brazilian cultivated pasturelands is 32–34% of its potential and that increasing productivity to 49–52% of the potential would suffice to meet demands for meat, crops, wood products and biofuels until at least 2040, without further conversion of natural ecosystems. As a result up to 14.3 Gt CO2 Eq could be mitigated. The fact that the country poised to undergo the largest expansion of agricultural production over the coming decades can do so without further conversion of natural habitats provokes the question whether the same can be true in other regional contexts and, ultimately, at the global scale

    Benthic habitat modelling and mapping as a conservation tool for marine protected areas: A seamount in the western Mediterranean

    Get PDF
    1. An ecologically representative, well‐connected, and effectively managed system of marine protected areas (MPAs) has positive ecological and environmental effects as well as social and economic benefits. Although progress in expanding the coverage of MPAs has been made, the application of management tools has not yet been implemented in most of these areas. 2. In this work, distribution models were applied to nine benthic habitats on a Mediterranean seamount within an MPA for conservation purposes. Benthic habitat occurrences were identified from 55 remotely operated vehicle (ROV) transects, at depths from 76 to 700 m, and data derived from multibeam bathymetry. Generalized additive models (GAMs) were applied to link the presence of each benthic habitat to local environmental proxies (depth, slope, backscatter, aspect, and bathymetric position index, BPI). 3. The main environmental drivers of habitat distribution were depth, slope, and BPI. Based on this result, five different geomorphological areas were distinguished. A full coverage map indicating the potential benthic habitat distribution on the seamount was obtained to inform spatial management. 4. The distribution of those habitats identified as vulnerable marine ecosystems (VMEs) was used to make recommendations on zonation for developing the management plan of the MPA. This process reveals itself as an appropriate methodological approach that can be developed in other areas of the Natura 2000 marine networkEn prensa1,92

    Water quality and its interlinkages with the Sustainable Development Goals

    Get PDF
    Interlinkages among the Sustainable Development Goals (SDGs) lead to important trade-offs and synergies among the goals and their underlying targets. The aim of this paper is to review the role of water quality as an agent of interlinkages among the SDGs. It was found that there are a small number of explicit interconnections, but many more inferred interlinkages between water quality and various targets. A review of case studies showed that interlinkages operate from the municipal to near global scales, that their importance is likely to increase in developing countries, and that new SDG indicators are needed to monitor them. The analysis identifies many different SDG target areas where a combined effort between the water quality community and other sectors would bring mutual benefits in achieving the water quality and other targets

    Agricultural Investments and Hunger in Africa Modelling Potential Contributions to SDG 2 - Zero Hunger

    Get PDF
    We use IFPRI’s IMPACT framework of linked biophysical and structural economic models to examine developments in global agricultural production systems, climate change, and food security. Building on related work on how increased investment in agricultural research, resource management, and infrastructure can address the challenges of meeting future food demand, we explore the costs and implications of these investments for reducing hunger in Africa by 2030. This analysis is coupled with a new investment estimation model, based on the perpetual inventory methodology (PIM), which allows for a better assessment of the costs of achieving projected agricultural improvements. We find that climate change will continue to slow projected reductions in hunger in the coming decades—increasing the number of people at risk of hunger in 2030 by 16 million in Africa compared to a scenario without climate change. Investments to increase agricultural productivity can offset the adverse impacts of climate change and help reduce the share of people at risk of hunger in 2030 to five percent or less in Northern, Western, and Southern Africa, but the share is projected to remain at ten percent or more in Eastern and Central Africa. Investments in Africa to achieve these results are estimated to cost about 15 billion USD per year between 2015 and 2030, as part of a larger package of investments costing around 52 billion USD in developing countries

    A screening tool to prioritize public health risk associated with accidental or deliberate release of chemicals into the atmosphere

    Get PDF
    The Chemical Events Working Group of the Global Health Security Initiative has developed a flexible screening tool for chemicals that present a risk when accidentally or deliberately released into the atmosphere. The tool is generic, semi-quantitative, independent of site, situation and scenario, encompasses all chemical hazards (toxicity, flammability and reactivity), and can be easily and quickly implemented by non-subject matter experts using freely available, authoritative information. Public health practitioners and planners can use the screening tool to assist them in directing their activities in each of the five stages of the disaster management cycle
    • 

    corecore