559 research outputs found

    Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Detailed spectral and morphological analysis of the shell type SNR RCW 86

    Full text link
    Aims: We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW~86 and for insights into the production mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods: We analyzed High Energy Spectroscopic System data that had increased sensitivity compared to the observations presented in the RCW~86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results:We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5~keV X-ray data reveals a correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is best described by a power law with an exponential cutoff at Ecut=(3.5±1.2stat)E_{cut}=(3.5\pm 1.2_{stat}) TeV and a spectral index of Γ\Gamma~1.6±0.21.6\pm 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW~86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to \sim0.1\% of the initial kinetic energy of a Type I a supernova explosion. When using a hadronic model, a magnetic field of BB~100μ\muG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E2^{-2} spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Γp\Gamma_p~1.7 would be required, which implies that ~7×1049/ncm37\times 10^{49}/n_{cm^{-3}}erg has been transferred into high-energy protons with the effective density ncm3=n/1n_{cm^{-3}}=n/ 1 cm^-3. This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1~cm^-3.Comment: accepted for publication by A&

    The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud

    Get PDF
    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble.Comment: Published in Science Magazine (Jan. 23, 2015). This ArXiv version has the supplementary online material incorporated as an appendix to the main pape

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE γ\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE γ\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous γ\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Detection of very high energy radiation from HESS J1908+063 confirms the Milagro unidentified source MGRO J1908+06

    Get PDF
    Aims. Detection of a γ-ray source above 300 GeV is reported, confirming the unidentified source MGRO J1908+06, discovered by the Milagro collaboration at a median energy of 20 TeV. Methods. The source was observed during 27 h as part of the extension of the HESS Galactic plane survey to longitudes >30◦. Results. HESS J1908+063 is detected at a significance level of 10.9σ with an integral flux above 1 TeV of (3.76 ± 0.29 stat± 0.75sys) × 10⁻¹² ph cm⁻² s⁻¹, and a spectral photon index Γ = 2.10 ± 0.07 stat ± 0.2sys. The positions and fluxes of HESS J1908+063 and MGRO J1908+06 are in good agreement. Possible counterparts at other wavelengths and the origin of the γ-ray emission are discussed. The nearby unidentified GeV source, GRO J1908+0556 (GeV) which also remains unidentified and the new Fermi pulsar 0FGL J1907.5+0617, may be connected to the TeV source.F. Aharonian ... G. Rowell ... et al

    Very high energy gamma-ray observations of the galaxy clusters Abell 496 and Abell 85 with HESS

    Get PDF
    Aims. The nearby galaxy clusters Abell 496 and Abell 85 are studied in the very high-energy (VHE, E > 100 GeV) band to investigate VHE cosmic rays (CRs) in this class of objects which are the largest gravitationally bound systems in the Universe. Methods. HESS, an array of four imaging atmospheric cherenkov telescopes (IACT), was used to observe the targets in the range of VHE gamma rays. Results. No significant gamma-ray signal is found at the respective position of the two clusters with several different source size assumptions for each target. In particular, emission regions corresponding to the high-density core, to the extension of the entire X-ray emission in these clusters, and to the very extended region where the accretion shock is expected are investigated. Upper limits are derived for the gamma-ray flux at energies E > 570 GeV for Abell 496 and E > 460 GeV for Abell 85. Conclusions. From the non-detection in VHE gamma rays, upper limits on the total energy of hadronic CRs in the clusters are calculated. If the cosmic-ray energy density follows the large-scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium (ICM) is 51% for Abell 496 and only 8% for Abell 85 due to its higher mass and higher gas density. These upper limits are compared with theoretical estimates. They predict about ~10% of the thermal energy of the ICM in non-thermal particles. The observations presented here can constrain these predictions especially for the case of the Abell 85 cluster.F. Aharonian...G. Rowell...A. Zech, et a
    corecore