580 research outputs found

    Detection of mRNA using the BIACORE

    Get PDF
    We present the detection of native mRNA using the BIACORE system. The influence of different probes and flow rates on the detection is shown and compared to the hybridisation of oligonucleotides. Probes for mRNA detection were chosen by calculations of secondary structures using energy minimizing criteria based on the algorithm of Zuker. Probe concentrations were optimised as well as the regeneration conditions for the sensor surface. The influence of the flow rate appeared to be more marked for mRNA than for oligonucleotide hybridisation

    A phenomenological model for the X-ray spectrum of Nova V2491 Cygni

    Get PDF
    The X-ray flux of Nova V2491 Cyg reached a maximum some forty days after optical maximum. The X-ray spectrum at that time, obtained with the RGS of XMM-Newton, shows deep, blue-shifted absorption by ions of a wide range of ionization. We show that the deep absorption lines of the X-ray spectrum at maximum, and nine days later, are well described by the following phenomenological model with emission from a central blackbody and from a collisionally ionized plasma (CIE). The blackbody spectrum (BB) is absorbed by three main highly-ionized expanding shells; the CIE and BB are absorbed by cold circumstellar and interstellar matter that includes dust. The outflow density does not decrease monotonically with distance. The abundances of the shells indicate that they were ejected from an O-Ne white dwarf. We show that the variations on time scales of hours in the X-ray spectrum are caused by a combination of variation in the central source and in the column density of the ionized shells. Our phenomenological model gives the best description so far of the supersoft X-ray spectrum of nova V2491 Cyg, but underpredicts, by a large factor, the optical and ultraviolet flux. The X-ray part of the spectrum must originate from a very different layer in the expanding envelope, presumably much closer to the white dwarf than the layers responsible for the optical/ultraviolet spectrum. This is confirmed by absence of any correlation between the X-ray and UV/optical observed fluxes.Comment: 11 pages, 6 figure

    A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays with Swift

    Get PDF
    The M 31 nova M31N 2008-12a was recently found to be a recurrent nova (RN) with a recurrence time of about 1 year. This is by far the fastest recurrence time scale of any known RNe. Our optical monitoring programme detected the predicted 2014 outburst of M31N 2008-12a in early October. We immediately initiated an X-ray/UV monitoring campaign with Swift to study the multiwavelength evolution of the outburst. We monitored M31N 2008-12a with daily Swift observations for 20 days after discovery, covering the entire supersoft X-ray source (SSS) phase. We detected SSS emission around day six after outburst. The SSS state lasted for approximately two weeks until about day 19. M31N 2008-12a was a bright X-ray source with a high blackbody temperature. The X-ray properties of this outburst were very similar to the 2013 eruption. Combined X-ray spectra show a fast rise and decline of the effective blackbody temperature. The short-term X-ray light curve showed strong, aperiodic variability which decreased significantly after about day 14. Overall, the X-ray properties of M31N 2008-12a are consistent with the average population properties of M 31 novae. The optical and X-ray light curves can be scaled uniformly to show similar time scales as those of the Galactic RNe U Sco or RS Oph. The SSS evolution time scales and effective temperatures are consistent with a high-mass WD. We predict the next outburst of M31N 2008-12a to occur in autumn 2015.Comment: 13 pages, 7 figures, 3 tables; accepted for publication in A&

    A remarkable recurrent nova in M 31: The X-ray observations

    Get PDF
    Context. Another outburst of the recurrent M 31 nova M31N 2008-12a was announced in late November 2013. Optical data suggest an unprecedentedly short recurrence time of approximately one year. Aims. In this Letter we address the X-ray properties of M31N 2008-12a. Methods. We requested Swift monitoring observations shortly after the optical discovery. We estimated source count rates and extracted X-ray spectra from the resulting data. The corresponding ultraviolet (UV) data was also analysed. Results. M31N 2008-12a was clearly detected as a bright supersoft X-ray source (SSS) only six days after the well-constrained optical discovery. It displayed a short SSS phase of two weeks duration and an exceptionally hot X-ray spectrum with an effective blackbody temperature of ∼ 97 eV. During the SSS phase the X-ray light curve displayed significant variability that might have been accompanied by spectral variations. The very early X-ray variability was found to be anti-correlated with simultaneous variations in the UV flux. Conclusions. The X-ray properties of M31N 2008-12a coherently point towards a high-mass white dwarf in the nova system. This object might be a promising Type Ia supernova progenitor. We re-discovered additional X-ray detections of M31N 2008-12a that are consistent with our data and increase the number of known nova outbursts to seven. This nova is an exceptional object that merits further attention in the future

    Short-period X-ray oscillations in super-soft novae and persistent SSS

    Get PDF
    Transient short-period <100s oscillations have been found in the X-ray light curves of three novae during their SSS phase and in one persistent SSS. We pursue an observational approach to determine possible driving mechanisms and relations to fundamental system parameters such as the white dwarf mass. We performed a systematic search for short-period oscillations in all available XMM-Newton and Chandra X-ray light curves of persistent SSS and novae during their SSS phase. To study time evolution, we divided each light curve into short time segments and computed power spectra. We then constructed dynamic power spectra from which we identified transient periodic signals even when only present for a short time. From all time segments of each system, we computed fractions of time when periodic signals were detected. In addition to the previously known systems with short-period oscillations, RS Oph (35s), KT Eri (35s), V339 Del (54s), and Cal 83 (67s), we found one additional system, LMC 2009a (33s), and also confirm the 35s period from Chandra data of KT Eri. The amplitudes of oscillations are of order <15% of the respective count rates and vary without any clear dependence on the X-ray count rate. The fractions of the time when the respective periods were detected at 2-sigma significance (duty cycle) are 11.3%, 38.8%, 16.9%, 49.2%, and 18.7% for LMC 2009a, RS Oph, KT Eri, V339 Del, and Cal 83, respectively. The respective highest duty cycles found in a single observation are 38.1%, 74.5%, 61.4%, 67.8%, and 61.8%.Comment: accepted for publication in A&

    A remarkable recurrent nova in M 31: The optical observations

    Get PDF
    Context. In late November 2013 a fifth eruption in five years of the M31 recurrent nova M31N 2008-12a was announced. Aims. In this Letter we address the optical lightcurve and progenitor system of M31N 2008-12a. Methods. Optical imaging data of the 2013 eruption from the Liverpool Telescope, La Palma, and Danish 1.54m Telescope, La Silla, and archival Hubble Space Telescope near-IR, optical and near-UV data are astrometrically and photometrically analysed. Results. Photometry of the 2013 eruption, combined with three previous eruptions, enabled construction of a template lightcurve of a very fast nova, t2 (V) ' 4 days. The archival data allowed recovery of the progenitor system in optical and near-UV data, indicating a red-giant secondary with bright accretion disk, or alternatively a system with a sub-giant secondary but dominated by a disk. Conclusions. The eruptions of M31N 2008-12a, and a number of historic X-ray detections, indicate a unique system with a recurrence timescale of � 1 year. This implies the presence of a very high mass white dwarf and a high accretion rate. The recovered progenitor system is consistent with such an elevated rate of accretion.We encourage additional observations, especially towards the end of 2014

    X-Ray Flashes in Recurrent Novae: M31N 2008-12a and the Implications of the Swift Non-detection

    Get PDF
    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M_sun and for two recurrence periods of 0.5 and 1 years. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hours (0.6 days) among the four cases is obtained for the 1.385 M_sun WD with one year recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 year recurrence period), which resulted in the non-detection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies and its detection is essentially important to understand the pre-optical-maximum phase. We encourage further observations

    No neon, but jets in the remarkable recurrent nova M31N 2008-12a? - Hubble Space Telescope spectroscopy of the 2015 eruption

    Get PDF
    The 2008 discovery of an eruption of M31N 2008-12a began a journey on which the true nature of this remarkable recurrent nova continues to be revealed. M31N 2008-12a contains a white dwarf close to the Chandrasekhar limit, accreting at a high rate from its companion, and undergoes thermonuclear eruptions which are observed yearly and may even be twice as frequent. In this paper, we report on Hubble Space Telescope STIS UV spectroscopy taken within days of the predicted 2015 eruption, coupled with Keck spectroscopy of the 2013 eruption. Together, this spectroscopy permits the reddening to be constrained to E(B-V) = 0.10 +/- 0.03. The UV spectroscopy reveals evidence for highly ionized, structured, and high velocity ejecta at early times. No evidence for neon is seen in these spectra however, but it may be that little insight can be gained regarding the composition of the white dwarf (CO vs ONe)

    No neon, but jets in the remarkable recurrent nova M31N 2008-12a? - Hubble Space Telescope spectroscopy of the 2015 eruption

    Get PDF
    The 2008 discovery of an eruption of M31N 2008-12a began a journey on which the true nature of this remarkable recurrent nova continues to be revealed. M31N 2008-12a contains a white dwarf close to the Chandrasekhar limit, accreting at a high rate from its companion, and undergoes thermonuclear eruptions which are observed yearly and may even be twice as frequent. In this paper, we report on Hubble Space Telescope STIS UV spectroscopy taken within days of the predicted 2015 eruption, coupled with Keck spectroscopy of the 2013 eruption. Together, this spectroscopy permits the reddening to be constrained to E(B-V) = 0.10 +/- 0.03. The UV spectroscopy reveals evidence for highly ionized, structured, and high velocity ejecta at early times. No evidence for neon is seen in these spectra however, but it may be that little insight can be gained regarding the composition of the white dwarf (CO vs ONe)

    Breaking the habit - the peculiar 2016 eruption of the unique recurrent nova M31N 2008-12a

    Get PDF
    Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a type-Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multi-wavelength properties: (i) From a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days; (ii) Early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout; (iii) The supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass-accretion rate. The corresponding higher ignition mass caused a brighter peak in the free-free emission model. The less-massive accretion disk experienced greater disruption, consequently delaying re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a
    corecore