211 research outputs found
Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides
The primary electron transfer (ET) in reaction centers (RC) of Rhodobacter sphaeroides is investigated as a function of temperature with femtosecond time resolution. For temperatures from 300 to 25 K the ET to the bacteriopheophytin is characterized by a biphasic time dependence. The two time constants of τ1=3.5±0.4 ps and τ2=1.2±0.3 ps at T=300 K decrease continously with temperature to values of τ1=1.4±0.3 ps and τ2=0.3±0.15 ps at 25 K. The experimental results indicate that the ET is not thermally activated and that the same ET mechanisms are active at room and low temperatures. All observations are readily rationalized by a two-step ET model with the monomeric bacteriochlorophyll as a real electron carrier
Planck Intermediate Results. IX. Detection of the Galactic haze with Planck
Using precise full-sky observations from Planck, and applying several methods
of component separation, we identify and characterize the emission from the
Galactic "haze" at microwave wavelengths. The haze is a distinct component of
diffuse Galactic emission, roughly centered on the Galactic centre, and extends
to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining
the Planck data with observations from the WMAP we are able to determine the
spectrum of this emission to high accuracy, unhindered by the large systematic
biases present in previous analyses. The derived spectrum is consistent with
power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding
free-free emission as the source and instead favouring hard-spectrum
synchrotron radiation from an electron population with a spectrum (number
density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the
microwave haze morphology is consistent with that of the Fermi gamma-ray "haze"
or "bubbles," indicating that we have a multi-wavelength view of a distinct
component of our Galaxy. Given both the very hard spectrum and the extended
nature of the emission, it is highly unlikely that the haze electrons result
from supernova shocks in the Galactic disk. Instead, a new mechanism for
cosmic-ray acceleration in the centre of our Galaxy is implied.Comment: 15 pages, 9 figures, submitted to Astronomy and Astrophysic
Coronal properties of the EQ Peg binary system
The activity indicators of M dwarfs are distinctly different for early and
late types. The coronae of early M dwarfs display high X-ray luminosities and
temperatures, a pronounced inverse FIP effect, and frequent flaring to the
extent that no quiescent level can be defined in many cases. For late M dwarfs,
fewer but more violent flares have been observed, and the quiescent X-ray
luminosity is much lower. To probe the relationship between coronal properties
with spectral type of active M dwarfs, we analyze the M3.5 and M4.5 components
of the EQ Peg binary system in comparison with other active M dwarfs of
spectral types M0.5 to M5.5. We investigate the timing behavior of both
components of the EQ Peg system, reconstruct their differential emission
measure, and investigate the coronal abundance ratios based on emission-measure
independent line ratios from their Chandra HETGS spectra. Finally we test for
density variations in different states of activity. The X-ray luminosity of EQ
Peg A (M3.5) is by a factor of 6-10 brighter than that of EQ Peg B (M4.5). Like
most other active M dwarfs, the EQ Peg system shows an inverse FIP effect. The
abundances of both components are consistent within the errors; however, there
seems to be a tendency toward the inverse FIP effect being less pronounced in
the less active EQ Peg B when comparing the quiescent state of the two stars.
This trend is supported by our comparison with other M dwarfs. As the X-ray
luminosity decreases with later spectral type, so do coronal temperatures and
flare rate. The amplitude of the observed abundance anomalies, i.e. the inverse
FIP effect, declines; however, clear deviations from solar abundances remain.Comment: 14 pages, accepted by A&
Monte Carlo vs. Pencil Beam based optimization of stereotactic lung IMRT
<p>Abstract</p> <p>Background</p> <p>The purpose of the present study is to compare finite size pencil beam (fsPB) and Monte Carlo (MC) based optimization of lung intensity-modulated stereotactic radiotherapy (lung IMSRT).</p> <p>Materials and methods</p> <p>A fsPB and a MC algorithm as implemented in a biological IMRT planning system were validated by film measurements in a static lung phantom. Then, they were applied for static lung IMSRT planning based on three different geometrical patient models (one phase static CT, density overwrite one phase static CT, average CT) of the same patient. Both 6 and 15 MV beam energies were used. The resulting treatment plans were compared by how well they fulfilled the prescribed optimization constraints both for the dose distributions calculated on the static patient models and for the accumulated dose, recalculated with MC on each of 8 CTs of a 4DCT set.</p> <p>Results</p> <p>In the phantom measurements, the MC dose engine showed discrepancies < 2%, while the fsPB dose engine showed discrepancies of up to 8% in the presence of lateral electron disequilibrium in the target. In the patient plan optimization, this translates into violations of organ at risk constraints and unpredictable target doses for the fsPB optimized plans. For the 4D MC recalculated dose distribution, MC optimized plans always underestimate the target doses, but the organ at risk doses were comparable. The results depend on the static patient model, and the smallest discrepancy was found for the MC optimized plan on the density overwrite one phase static CT model.</p> <p>Conclusions</p> <p>It is feasible to employ the MC dose engine for optimization of lung IMSRT and the plans are superior to fsPB. Use of static patient models introduces a bias in the MC dose distribution compared to the 4D MC recalculated dose, but this bias is predictable and therefore MC based optimization on static patient models is considered safe.</p
Statistical Properties of Turbulence: An Overview
We present an introductory overview of several challenging problems in the
statistical characterisation of turbulence. We provide examples from fluid
turbulence in three and two dimensions, from the turbulent advection of passive
scalars, turbulence in the one-dimensional Burgers equation, and fluid
turbulence in the presence of polymer additives.Comment: 34 pages, 31 figure
Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms
BACKGROUND: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS: A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS: The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION: The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
- …