301 research outputs found
Mammalian Small Nucleolar RNAs Are Mobile Genetic Elements
Small nucleolar RNAs (snoRNAs) of the H/ACA box and C/D box categories guide the pseudouridylation and the 2′-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body–specific RNAs (scaRNAs) guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs) characterized by an A-rich tail and an ∼14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions
Mining small RNA sequencing data: a new approach to identify small nucleolar RNAs in Arabidopsis
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that direct 2′-O-methylation or pseudouridylation on ribosomal RNAs or spliceosomal small nuclear RNAs. These modifications are needed to modulate the activity of ribosomes and spliceosomes. A comprehensive repertoire of snoRNAs is needed to expand the knowledge of these modifications. The sequences corresponding to snoRNAs in 18–26-nt small RNA sequencing data have been rarely explored and remain as a hidden treasure for snoRNA annotation. Here, we showed the enrichment of small RNAs at Arabidopsis snoRNA termini and developed a computational approach to identify snoRNAs on the basis of this characteristic. The approach successfully uncovered the full-length sequences of 144 known Arabidopsis snoRNA genes, including some snoRNAs with improved 5′- or 3′-end annotation. In addition, we identified 27 and 17 candidates for novel box C/D and box H/ACA snoRNAs, respectively. Northern blot analysis and sequencing data from parallel analysis of RNA ends confirmed the expression and the termini of the newly predicted snoRNAs. Our study especially expanded on the current knowledge of box H/ACA snoRNAs and snoRNA species targeting snRNAs. In this study, we demonstrated that the use of small RNA sequencing data can increase the complexity and the accuracy of snoRNA annotation
Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer
BACKGROUND
The growth arrest-specific transcript 5 gene (GAS5) encodes a long noncoding RNA (lncRNA) and hosts a number of small nucleolar RNAs (snoRNAs) that have recently been implicated in multiple cellular processes and cancer. Here, we investigate the relationship between DNA damage, p53, and the GAS5 snoRNAs to gain further insight into the potential role of this locus in cell survival and oncogenesis both in vivo and in vitro.
METHODS
We used quantitative techniques to analyse the effect of DNA damage on GAS5 snoRNA expression and to assess the relationship between p53 and the GAS5 snoRNAs in cancer cell lines and in normal, pre-malignant, and malignant human colorectal tissue and used biological techniques to suggest potential roles for these snoRNAs in the DNA damage response.
RESULTS
GAS5-derived snoRNA expression was induced by DNA damage in a p53-dependent manner in colorectal cancer cell lines and their levels were not affected by DICER. Furthermore, p53 levels strongly correlated with GAS5-derived snoRNA expression in colorectal tissue.
CONCLUSIONS
In aggregate, these data suggest that the GAS5-derived snoRNAs are under control of p53 and that they have an important role in mediating the p53 response to DNA damage, which may not relate to their function in the ribosome. We suggest that these snoRNAs are not processed by DICER to form smaller snoRNA-derived RNAs with microRNA (miRNA)-like functions, but their precise role requires further evaluation. Furthermore, since GAS5 host snoRNAs are often used as endogenous controls in qPCR quantifications we show that their use as housekeeping genes in DNA damage experiments can lead to inaccurate results
Intron Dynamics in Ribosomal Protein Genes
The role of spliceosomal introns in eukaryotic genomes remains obscure. A large scale analysis of intron presence/absence patterns in many gene families and species is a necessary step to clarify the role of these introns. In this analysis, we used a maximum likelihood method to reconstruct the evolution of 2,961 introns in a dataset of 76 ribosomal protein genes from 22 eukaryotes and validated the results by a maximum parsimony method. Our results show that the trends of intron gain and loss differed across species in a given kingdom but appeared to be consistent within subphyla. Most subphyla in the dataset diverged around 1 billion years ago, when the “Big Bang” radiation occurred. We speculate that spliceosomal introns may play a role in the explosion of many eukaryotes at the Big Bang radiation
Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs
Expression of dsRNA complementary to small nucleolar RNAs (snoRNAs) in Trypanosoma brucei results in snoRNA silencing, termed snoRNAi. Here, we demonstrate that snoRNAi requires the nuclear TbDCL2 protein, but not TbDCL1, which is involved in RNA interference (RNAi) in the cytoplasm. snoRNAi depends on Argonaute1 (Slicer), and on TbDCL2, suggesting that snoRNA dicing and slicing takes place in the nucleus, and further suggesting that AGO1 is active in nuclear silencing. snoRNAi was next utilized to elucidate the function of an abundant snoRNA, TB11Cs2C2 (92 nt), present in a cluster together with the spliced leader associated RNA (SLA1) and snR30, which are both H/ACA RNAs with special nuclear functions. Using AMT-UV cross-linking and RNaseH cleavage, we provide evidence for the interaction of TB11Cs2C2 with the small rRNAs, srRNA-2 and srRNA-6, which are part of the large subunit (LSU) rRNA. snoRNAi of TB11Cs2C2 resulted in defects in generating srRNA-2 and LSUβ rRNA. This is the first snoRNA described so far to engage in trypanosome-specific processing events
Systematic identification and characterization of chicken (Gallus gallus) ncRNAs
Recent studies have demonstrated that non-coding RNAs (ncRNAs) play important roles during development and evolution. Chicken, the first genome-sequenced non-mammalian amniote, possesses unique features for developmental and evolutionary studies. However, apart from microRNAs, information on chicken ncRNAs has mainly been obtained from computational predictions without experimental validation. In the present study, we performed a systematic identification of intermediate size ncRNAs (50–500 nt) by ncRNA library construction and identified 125 chicken ncRNAs. Importantly, through the bioinformatics and expression analysis, we found the chicken ncRNAs has several novel features: (i) comparative genomic analysis against 18 sequenced vertebrate genomes revealed that the majority of the newly identified ncRNA candidates is not conserved and most are potentially bird/chicken specific, suggesting that ncRNAs play roles in lineage/species specification during evolution. (ii) The expression pattern analysis of intronic snoRNAs and their host genes suggested the coordinated expression between snoRNAs and their host genes. (iii) Several spatio-temporal specific expression patterns suggest involvement of ncRNAs in tissue development. Together, these findings provide new clues for future functional study of ncRNAs during development and evolution
Evolutionarily Stable Association of Intronic snoRNAs and microRNAs with Their Host Genes
Small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) are integral to a range of processes, including ribosome biogenesis and gene regulation. Some are intron encoded, and this organization may facilitate coordinated coexpression of host gene and RNA. However, snoRNAs and miRNAs are known to be mobile, so intron-RNA associations may not be evolutionarily stable. We have used genome alignments across 11 mammals plus chicken to examine positional orthology of snoRNAs and miRNAs and report that 21% of annotated snoRNAs and 11% of miRNAs are positionally conserved across mammals. Among RNAs traceable to the bird–mammal common ancestor, 98% of snoRNAs and 76% of miRNAs are intronic. Comparison of the most evolutionarily stable mammalian intronic snoRNAs with those positionally conserved among primates reveals that the former are more overrepresented among host genes involved in translation or ribosome biogenesis and are more broadly and highly expressed. This stability is likely attributable to a requirement for overlap between host gene and intronic snoRNA expression profiles, consistent with an ancestral role in ribosome biogenesis. In contrast, whereas miRNA positional conservation is comparable to that observed for snoRNAs, intronic miRNAs show no obvious association with host genes of a particular functional category, and no statistically significant differences in host gene expression are found between those traceable to mammalian or primate ancestors. Our results indicate evolutionarily stable associations of numerous intronic snoRNAs and miRNAs and their host genes, with probable continued diversification of snoRNA function from an ancestral role in ribosome biogenesis
Exonic remnants of whole-genome duplication reveal cis-regulatory function of coding exons
Using a comparative genomics approach to reconstruct the fate of genomic regulatory blocks (GRBs) and identify exonic remnants that have survived the disappearance of their host genes after whole-genome duplication (WGD) in teleosts, we discover a set of 38 candidate cis-regulatory coding exons (RCEs) with predicted target genes. These elements demonstrate evolutionary separation of overlapping protein-coding and regulatory information after WGD in teleosts. We present evidence that the corresponding mammalian exons are still under both coding and non-coding selection pressure, are more conserved than other protein coding exons in the host gene and several control sets, and share key characteristics with highly conserved non-coding elements in the same regions. Their dual function is corroborated by existing experimental data. Additionally, we show examples of human exon remnants stemming from the vertebrate 2R WGD. Our findings suggest that long-range cis-regulatory inputs for developmental genes are not limited to non-coding regions, but can also overlap the coding sequence of unrelated genes. Thus, exonic regulatory elements in GRBs might be functionally equivalent to those in non-coding regions, calling for a re-evaluation of the sequence space in which to look for long-range regulatory elements and experimentally test their activity
PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences
Motivation: Predicting RNA–RNA interactions is essential for determining the function of putative non-coding RNAs. Existing methods for the prediction of interactions are all based on single sequences. Since comparative methods have already been useful in RNA structure determination, we assume that conserved RNA–RNA interactions also imply conserved function. Of these, we further assume that a non-negligible amount of the existing RNA–RNA interactions have also acquired compensating base changes throughout evolution. We implement a method, PETcofold, that can take covariance information in intra-molecular and inter-molecular base pairs into account to predict interactions and secondary structures of two multiple alignments of RNA sequences
- …