559 research outputs found

    Real-time, interactive, visually updated simulator system for telepresence

    Get PDF
    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration

    Climate change response: a report to establish the knowledge required for a TIANZ response and policy formulation with the Government post Kyoto Protocol ratification

    Get PDF
    The Tourism Industry Association of New Zealand commissioned this report ‘as a definitive reference point for the Tourism sector with regard to its greenhouse gas emissions (CO₂) and the potential impacts on the sector, in order to establish the underpinning knowledge required for a subsequent TIANZ response and policy formulation with the Government post the Kyoto Protocol ratification’. The value of the tourism sector, in terms of GDP and employment is self-evident but there is also growing awareness of the New Zealand environment by the international market which is critical to New Zealand’s future prosperity. Both the tourism sector and the Government recognise the importance of the ‘state of New Zealand’s environment’ and the need to genuinely sustain the image of ‘100% Pure New Zealand’, as it is implicitly linked to maintaining credibility and growth in a highly competitive market.Prepared for the Tourism Industry Association New Zealand (TIANZ), Landcare Research Contract Report, LC0102/107

    A Simplified 8 × 8 Transformation And Quantization Real-Time Ip-Block For MPEG-4 H.264/AVC Applications: A New Design Flow Approach

    Get PDF
    Current multimedia design processes suffer from the excessively large time spent on testing new IP-blocks with references based on large video encoders specifications (usually several thousands lines of code). The appropriate testing of a single IP-block may require the conversion of the overall encoder from software to hardware, which is difficult to complete in the short time required by the competition-driven reduced time-to-market demanded for the adoption of a new video coding standard. This paper presents a new design flow to accelerate the conformance testing of an IP-block using the H.264/AVC software reference model. An example block of the simplified 8 × 8 transformation and quantization, which is adopted in FRExt, is provided as a case study demonstrating the effectiveness of the approach

    Incremental dimension reduction of tensors with random index

    Get PDF
    We present an incremental, scalable and efficient dimension reduction technique for tensors that is based on sparse random linear coding. Data is stored in a compactified representation with fixed size, which makes memory requirements low and predictable. Component encoding and decoding are performed on-line without computationally expensive re-analysis of the data set. The range of tensor indices can be extended dynamically without modifying the component representation. This idea originates from a mathematical model of semantic memory and a method known as random indexing in natural language processing. We generalize the random-indexing algorithm to tensors and present signal-to-noise-ratio simulations for representations of vectors and matrices. We present also a mathematical analysis of the approximate orthogonality of high-dimensional ternary vectors, which is a property that underpins this and other similar random-coding approaches to dimension reduction. To further demonstrate the properties of random indexing we present results of a synonym identification task. The method presented here has some similarities with random projection and Tucker decomposition, but it performs well at high dimensionality only (n>10^3). Random indexing is useful for a range of complex practical problems, e.g., in natural language processing, data mining, pattern recognition, event detection, graph searching and search engines. Prototype software is provided. It supports encoding and decoding of tensors of order >= 1 in a unified framework, i.e., vectors, matrices and higher order tensors.Comment: 36 pages, 9 figure

    New Multithreaded Hybrid CPU/GPU Approach to Hartree−Fock

    Get PDF
    In this article, a new multithreaded Hartree–Fock CPU/GPU method is presented which utilizes automatically generated code and modern C++ techniques to achieve a significant improvement in memory usage and computer time. In particular, the newly implemented Rys Quadrature and Fock Matrix algorithms, implemented as a stand-alone C++ library, with C and Fortran bindings, provides up to 40% improvement over the traditional Fortran Rys Quadrature. The C++ GPU HF code provides approximately a factor of 17.5 improvement over the corresponding C++ CPU code

    Isotopes in pyrogenic carbon: a review

    Get PDF
    Pyrogenic carbon (PC; also known as biochar, charcoal, black carbon and soot) derived from natural and anthropogenic burning plays a major, but poorly quantified, role in the global carbon cycle. Isotopes provide a fundamental fingerprint of the source of PC and a powerful tracer of interactions between PC and the environment. Radiocarbon and stable carbon isotope techniques have been widely applied to studies of PC in aerosols, soils, sediments and archaeological sequences, with the use of other isotopes currently less developed. This paper reviews the current state of knowledge regarding (i) techniques for isolating PC for isotope analysis and (ii) processes controlling the carbon (<sup>13</sup>C and <sup>14</sup>C), nitrogen, oxygen, hydrogen and sulfur isotope composition of PC during formation and after deposition. It also reviews the current and potential future applications of isotope based studies to better understand the role of PC in the modern environment and to the development of records of past environmental change

    Sentence entailment in compositional distributional semantics

    Get PDF
    Distributional semantic models provide vector representations for words by gathering co-occurrence frequencies from corpora of text. Compositional distributional models extend these from words to phrases and sentences. In categorical compositional distributional semantics, phrase and sentence representations are functions of their grammatical structure and representations of the words therein. In this setting, grammatical structures are formalised by morphisms of a compact closed category and meanings of words are formalised by objects of the same category. These can be instantiated in the form of vectors or density matrices. This paper concerns the applications of this model to phrase and sentence level entailment. We argue that entropy-based distances of vectors and density matrices provide a good candidate to measure word-level entailment, show the advantage of density matrices over vectors for word level entailments, and prove that these distances extend compositionally from words to phrases and sentences. We exemplify our theoretical constructions on real data and a toy entailment dataset and provide preliminary experimental evidence.Comment: 8 pages, 1 figure, 2 tables, short version presented in the International Symposium on Artificial Intelligence and Mathematics (ISAIM), 201

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    A comprehensive database of quality-rated fossil ages for Sahul\u27s Quaternary vertebrates

    Get PDF
    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery
    • 

    corecore