Abstract

Pyrogenic carbon (PC; also known as biochar, charcoal, black carbon and soot) derived from natural and anthropogenic burning plays a major, but poorly quantified, role in the global carbon cycle. Isotopes provide a fundamental fingerprint of the source of PC and a powerful tracer of interactions between PC and the environment. Radiocarbon and stable carbon isotope techniques have been widely applied to studies of PC in aerosols, soils, sediments and archaeological sequences, with the use of other isotopes currently less developed. This paper reviews the current state of knowledge regarding (i) techniques for isolating PC for isotope analysis and (ii) processes controlling the carbon (<sup>13</sup>C and <sup>14</sup>C), nitrogen, oxygen, hydrogen and sulfur isotope composition of PC during formation and after deposition. It also reviews the current and potential future applications of isotope based studies to better understand the role of PC in the modern environment and to the development of records of past environmental change

    Similar works