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Abstract  

Charcoal is a key component of the Black Carbon (BC) continuum, where BC is  

characterized as a recalcitrant, fire-derived, polyaromatic material. Charcoal is an  

important source of palaeoenvironmental data, and of great interest as a potential  

carbon sink, due to its high apparent environmental stability. However, at least some  

forms of charcoal are clearly susceptible to environmental alteration and degradation  

over relatively short timescales. Although these processes have importance for the  

role of charcoal in global biogeochemistry, they remain poorly understood.    

Here we present results of an investigation into the susceptibility of a range of  

charcoal samples to oxidative degradation in acidified potassium dichromate. The  

study examines both freshly produced charcoal, and charcoal exposed to  

environmental conditions for up to 50,000 years. We compare the proportion of  

carbon present in different forms between the samples, specifically with respect to the  

relative chemical resistance of these forms. This was undertaken in order to improve  

understanding of the post-depositional diagenetic changes affecting charcoal within  

environmental deposits.   

A wide range in chemical compositions are apparent both within and between  

the sample groups. In freshly produced charcoal, material produced at 300°C contains  

carbon with more labile forms than charcoal produced at ≥400°C, signifying a key  

chemical change over the 300-400°C temperature range. Charcoal exposed to  

environmental depositional conditions is frequently composed of a highly  

carboxylated aromatic structure and contains a range of carbon fractions of varying  

oxidative resistance. These findings suggest that a significant number of the  

environmental charcoals have undergone post-depositional diagenetic alteration.  

Further, the data highlight the potential for the use of controlled progressive oxidative  
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degradation as a method to characterize chemical differences between individual  

charcoal samples.   
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1 INTRODUCTION  

  

A key component of global carbon cycles is “Black Carbon” (BC), the fire-  

derived product of biomass, with an estimated 40-270 Tg year-1 of BC produced via  

global biomass burning (Kuhlbusch et al., 1996). Black Carbon is frequently  

characterized by high aromaticity, high oxidative resistance and a demonstrably  

pyrogenic origin (Bird and Gröcke, 1997; Schmidt and Noack, 2000; Preston and  

Schmidt, 2006; Scott, 2010) and the term ‘BC’ is applied to a broad continuum of  

materials, including char, charcoal and soot (Goldberg, 1985; Seiler and Crutzen,  

1980; Hedges et al., 2000; Schmidt et al., 2001; Maisello, 2004; Scott, 2010).   

BC is chemically highly stable and environmentally recalcitrant, due to a  

polyaromatic structure (Simpson and Hatcher, 2004, Haumeier and Zech, 1995), and  

is one of the most slowly cycling components of terrestrial and marine carbon  

reservoirs (Masiello and Druffel, 1998; Schmidt et al., 2002). The ~5-7ky half-life of  

BC-containing materials in soils (Preston and Schmidt, 2006), greatly exceeds the  

mean residence time of bulk organic carbon in surface soil and subsoil (~300 years  

and ~2500 years respectively (Fontaine et al., 2007)). Therefore, there is considerable  

interest in the potential of BC as a major atmospheric carbon sink (Lal, 2008;  

Lehmann et al., 2006). However, it is also clear from recent research that various  

forms of BC may be subject to environmental alteration and degradation on shorter  

timescales (Schmidt and Noack, 2000; Bird et al., 1999; 2002; Kaal et al., 2007;  

Ascough et al., 2010a; 2010b; 2011). Both biotic and abiotic mechanisms are  

proposed for the alteration of BC in soils. For example, BC surfaces can provide a  

microhabitat for soil microbes (Wardle et al., 1998; Pietkäinen et al., 2000; Hockaday  
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et al., 2007; Ascough et al., 2010c), and BC mineralization is observed during  

laboratory incubations (Baldock and Smernik, 2002; Hamer et al., 2004).  

Clear variations exist in production mechanism, chemical properties and  

environmental dispersal between BC materials (Gelinas et al., 2001). A significant  

component of the BC continuum is charcoal, the solid product of biomass exposed to  

elevated temperatures in restricted oxygen availability (Antal and Grønli. 2003; Scott,  

2010). During charcoal production lignocellulosic fragments are thermally degraded  

and undergo large-scale rearrangement into aromatic structures (Antal and Grønli,  

2003). As higher charring temperatures are reached (e.g. >700°C), highly ordered,  

‘graphitic’ polyaromatic microcystalline domains become evident within charcoal  

microstructure (Darmstadt et al., 2000; Cohen-Ofri et al., 2006). Some charcoal  

carbon is therefore a highly recalcitrant, polyaromatic substance, surviving in near-  

pristine condition and identifiable to species level even after millennia of  

environmental exposure (e.g. Scott, 2000; 2010).   

Despite this, charcoal is clearly not a homogeneous substance, and forms a  

continuum of compositional types dependent upon production variables, especially  

temperature. This produces chemical structures in charcoal that range from material  

similar to uncharred biomass, to material with features of completely ordered  

graphite. For example some lower-temperature (i.e 300°C) material may retain  

incompletely degraded lignocellulosic fragments (Ascough et al., 2008). Physical and  

chemical properties of charcoal therefore vary widely, and charcoal is a  

heterogeneous substance composed of thermally altered biomacromolecules (Baldock  

and Smernik, 2002; Knicker, 2007; Knicker et al., 2008). Some charcoal also clearly  

undergoes environmental alteration and degradation, as charcoal carbon is  

progressively lost from cave deposits as well as savannah and boreal soils (Harden et  
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al., 2000; Bird et al., 1999 Bird et al., 2002), and substances chemically consistent  

with charcoal degradation products are present in soils and sediments (Haumeier and  

Zech., 1995; Hockaday et al., 2007).   

Oxidative processes, particularly carboxylation, appear to be important in  

charcoal alteration processes (Cohen-Ofri et al 2006), suggesting that charcoal more  

susceptible to oxidative attack is more likely to undergo alteration in the environment.  

However, the factors influencing such susceptibility in charcoal are not well  

understood. The degree of post-depositional diagenetic alteration does not necessarily  

correlate with the time period of environmental exposure (Cheng et al., 2008; Liang et  

al., 2008), suggesting that charcoal production variables and chemistry of the  

depositional environment are more likely to control charcoal alteration. Ambiguity  

also surrounds the provenancing of different carbon fractions within charcoal  

recovered from environmental deposits; are these production-derived, or do they  

represent the effects of post-depositional diagenesis? This uncertainty means that  

confidently identifying diagnetically altered charcoal can be difficult.  

BC quantification is frequently operationally defined, where the specific criteria  

for definition depend upon the particular methodological approach (Hammes et al.,  

2007). An approach that allows identification of the presence and oxidative resistance  

of different fractions within carbonized biomass is oxidation with acidified potassium  

dichromate (K2Cr2O7) (e.g. Wolbach and Anders 1989; Bird and Groke, 1997). This is  

commonly used to quantify the BC component in environmental matrices, when the  

aim is to maximize both removal of labile material and recovery of the BC fraction  

and oxidation is performed for a single time interval. However, where sufficient  

sample is available, it is also possible to use the K2Cr2O7 method to compare the  

various proportions and reactivity of different sample fractions, via the construction of  
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oxidation rate curves (e.g. Wolbach and Anders, 1988; Bird and Gröcke, 1997;  

Masiello et al., 2002). Here we use this approach to contrast the proportion and nature  

of carbonaceous fractions within different charcoal types. This includes both material  

freshly-produced under a range of pyrolysis conditions (including open fires), and  

charcoal exposed to environmental conditions for time intervals of up to 50,000 years.  

The results are discussed with respect to the post-depositional alteration of charcoal,  

and the implications of this alteration for understanding of the role of charcoal in the  

environment.   
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2 MATERIALS AND METHODS  

  
2.1 Charcoal samples  

  

Freshly-produced charcoal was prepared in laboratory-controlled conditions and on  

open fires (Frchar), while charcoal exposed to environmental conditions (Envchar) was  

recovered from archaeological and sedimentary deposits (Table 1).   

For laboratory-produced Frchar, 1cm3 cubes of either Scots pine (Pinus  

sylvestris) or mangrove (Rhizophora apiculata) wood were converted to charcoal in a  

rotary tube furnace at four temperatures (300, 400, 500 and 600°C). Once the required  

temperature was reached, the sample was heated for 60 minutes under either inert  

(100% N2) conditions, or in the presence of 2% O2 (see Ascough et al., 2008). Two  

charcoal samples were also produced from Pinus sylvestris cubes on an open fire for  

an equivalent time to the laboratory-produced charcoal. Oxygen availability was  

restricted during production of these samples by wrapping the wood in aluminium foil  

during heating.  A sample of commercially produced Highly Ordered Pyrolytic  

Graphite (HOPG, SPI supplies) was also obtained. This was included in the suite of  

Frchar to represent an ordered polyaromatic structure comprised of 100% graphitic  

carbon.   

13 samples of Envchar (Env-1 to Env-13) were obtained from archaeological  

and natural deposits. The age of the samples are based upon radiocarbon (14C), or  

stratigraphic grounds, and range from <50 years (129.7 ± 0.4 pMC) to 50,000 years.  

Material was obtained from previously excavated archaeological sites over an  

environmental range from high-latitude boreal to low-latitude tropical zones (see  

Table 1) via liaison with the site excavators. All Envchar was isolated from the  

sedimentary matrix by conventional water floatation, which removed visible soil  
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contaminants. Samples were inspected in the lab and further soil material was  

removed by sonication in deionized (Milli-QTM) water in the lab for 2 hours, followed  

by air-drying at 40°C.   

Frchar and Envchar were lightly crushed and the 63-500 μm fraction isolated by  

sieving. Calcitic ash and soil carbonates were removed by a 0.5M HCl wash, after  

which charcoal was rinsed three times in Milli-QTM water and air-dried at 40°C.  

Mineral ash contents were determined by loss on ignition at 1020°C, where  

measurement precision based on three replicates was ± 0.5%. Frchar ash contents were  

generally <1%, however ash contents were higher in some Envchar. Elemental  

abundance values were consequently calculated on an ash-free basis.  

  

2.2 Chemical oxidation  

  

Dichromate oxidations followed the method of Bird and Gröcke, (1997),  

using between 0.1 and 0.15g of dry charcoal. The initial weight was selected to ensure  

sufficient sample remained for analysis following oxidation. The charcoal was mixed  

with 40ml of 0.1M K2Cr2O7 in 2M H2SO4 in a capped centrifuge tube and placed in a  

controlled temperature incubator shaker. Oxidations took place at 60°C for time  

periods of up to 4136 hours (i.e. 172 days). The K2Cr2O7 was sometimes exhausted  

before the end of the oxidation period. This was identifiable by discolouration of the  

orange solution, which was then removed by centrifugation and decanting, and fresh  

reagent added.  After the pre-determined oxidation period, solid charcoal was  

separated from solution by centrifugation and filtration. Samples were then washed  

three times in Milli-QTM water to remove remaining K2Cr2O7.   
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Samples were transferred to clean glass vials by pipette in Milli-QTM water  

and frozen. Oxidative mass losses were then determined following lypholization. Care  

was taken at each step to minimize sample losses. Uncertainties due to recovery were  

± 3% by weight, based on replicate measurements of a 300°C pine charcoal following  

identical treatment using Milli-QTM water in place of K2Cr2O7 solution.   

  

2.3 Elemental and isotopic analysis  

  

Carbon content (%C) and isotopic values (δ13C) were determined for samples prior to  

and following K2Cr2O7 oxidation. Measurements were made on a Costech elemental  

analyser (EA) (Milan, Italy) fitted with a zero-blank auto-sampler. The EA was linked  

via a ConFloIII to a ThermoFinnigan Deltaplus XL isotope ratio mass spectrometer  

(Thermo Finnigan GmbH, Bremen, FRG) as described in Werner et al., (1999).  

Samples were measured in duplicate, along with a mix of blanks and laboratory  

standards. The standards were acetanilide (IAEA/Sigma Aldrich; %C: 71.09%, δ13C: -  

30.11‰), a commercially available protein (Organic Analytical Standard B2155,  

Elemental Microanalysis; %C: 47.02, δ13C: -26.98‰) and a C4 cane sugar/uric acid  

mix (Tesco; %C: 40.20, δ13C: -12.02‰). External reproducibility for %C was better  

than 0.5%. Isotopic values are reported as per mil (‰) deviations from the VPDB  

international standard. The measurement precision was better than ±0.3% (1σ) for  

%C, and ±0.2‰ (1σ) for δ13C.   

Oxygen content (%O) of samples was obtained prior to K2Cr2O7 oxidation,  

and at selected points during K2Cr2O7 treatment to determine the net effect of  

oxidation on sample %O. Measurements were made using a Thermo Finnigan high  

temperature conversion elemental analyser (TC/EA) linked to a Thermo DeltaPlus  
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Advantage isotope ratio mass spectrometer (both Thermo Finnigan GmbH, Bremen,  

FRG), with acetanilide (IAEA/Sigma Aldrich, %O: 11.84%) as the internal standard.  

External reproducibility for %O was better than 0.7%.   

  

2.4 FTIR  

  

Fourier Transform Infrared Spectroscopy (FTIR) using the mid-infrared  

region of the electromagnetic spectrum (~4000–400 cm−1) reveals qualitative detail  

regarding the nature of chemical bonds in biomass, including charcoal (e.g. Moore  

and Owen, 2001; Nishimiya et al., 1998; Guo and Bustin, 1998). Selected samples  

were subjected to FTIR prior to K2Cr2O7 oxidation, and following progressive  

oxidation. This allowed a comparison of the chemical forms present within individual  

charcoal samples that displayed different rates of degradation during chemical  

oxidation.   

Dry samples were diluted by grinding with solid KBr and pressed into  

pellets. Analyses were performed using a Nicolet FTIR with absorbance values  

determined between 4000 and 400 cm−1. Spectral bands were subsequently identified  

by comparison with published assignments (Table 2). The Frchar and Envchar samples  

analysed were chosen to represent different end members with respect to resistance to  

K2Cr2O7 oxidation, including the most and least resistant charcoals of both sample  

sets. The Frchar included charcoal produced at the lowest (300°C) and highest (600°C)  

temperatures, under both N2 and 2% O2, and the Envchar included Env-1, Env-2, Env-  

5, Env-6, Env-10, and Env-13. FTIR spectra for unoxidized Frchar produced under N2  

at 300ºC and 600ºC, and for Env-1, Env-2, Env-5, and Env-6, are previously reported  

in Ascough et al (2011).   
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2.5 13C-CPMAS NMR spectroscopy  

  

Solid-state 13C Nuclear Magnetic Resonance Spectroscopy, using cross-  

polarization magic angle spinning (13C-CPMAS NMR spectroscopy) is used to reveal  

detail in the chemical structure of specific carbon (C) environments within carbonized  

biomass based upon the 13C signal intensity and chemical shift (e.g. Baldock and  

Smernik, 2002; Simpson and Hatcher 2004). Selected samples were subjected to 13C-  

CPMAS NMR spectroscopy, including Frchar produced at the lowest (300°C) and  

highest (600°C) temperatures under N2 and Envchar sample Env-1. These were chosen  

to represent charcoal end members with high and low chemical oxidative resistance.  

13C-CPMAS NMR spectra were recorded on a 400 MHz Varian VNMRS instrument  

operating at 100.56 MHz for 13C and using a 4mm magic-angle spinning probe with a  

zirconium oxide rotor fitted with Teflon end caps. Spectra were referenced to  

external, neat tetramethylsilane, and for cross polarization typical acquisition  

conditions were a 1 s recycle delay, 1 ms contact time and a sample spin-rate of 12  

kHz. A variable (ramped) amplitude 1H spin-lock pulse was used for the cross  

polarization step. The pulse sequence incorporated a spin-echo to suppress a broad  

background signal from the Vespel spinner housing; this has resulted in a small  

amount of signal arising from the Teflon rotor caps being observed in some spectra at  

~111 ppm.  
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RESULTS  

  
2.6 Oxidative carbon loss rates  

  

Large differences were observed during K2Cr2O7 oxidation between Frchar prepared at  

300°C and Frchar prepared at ≥400°C (Table 3). The ≥400°C Frchar consists of a single  

resistant carbon component, with an oxidative half life (T1/2) on the order of 800-1000  

hours, similar to that of the HOPG. Overall oxidative resistance of Frchar is directly  

correlated with production temperature, and is higher in samples prepared in 2% O2.  

Mangrove charcoal also appears more resistant than pine charcoal prepared under  

identical conditions. Frchar produced in open fires shows similar oxidative resistance to  

the ≥400°C Frchar (e.g. <20% C loss after >200 hours oxidation).    

In the 300°C Frchar at least two carbon components of different oxidative  

resistance are visible, identifiable by a change in the rate of oxidative C loss. Both of  

these have lower oxidative resistance than the ≥400°C Frchar and even the most  

resistant carbon in these samples has T1/2 on the order of <100 hours. In 300°C Frchar  

produced under N2, pine charcoal is more labile than mangrove charcoal during  

K2Cr2O7, for example 80% of C in sample P-300 is removed in <1 hour of oxidation.  

However in 300°C Frchar produced under 2% O2, mangrove charcoal is more labile,  

although C loss still approaches completion after 432 hours of oxidation.   

Differences in %C loss rates are apparent between the Envchar samples during  

K2Cr2O7 oxidation. (Table 4). A highly resistant component, (with T1/2 of 300-1500  

hours) is visible in all Envchar with the exception of Env-2. Samples Env-1 and Env-9  

appear to consist solely of this material; only <40% of sample C is removed from  

Env-1 in >4000 hours of oxidation. In other Envchar the amount of the highly resistant  

carbon typically comprises 20-40% of total sample C, but varies between samples.   
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As well as a highly resistant component, the majority of Envchar contains at least  

two other C components of lower oxidative resistance. The most labile of these is  

removed in <24 hours K2Cr2O7 oxidation. This is apparent in Env-5, where 61% of  

sample C is oxidized with T1/2 of 2 hours and in Env-2, where 80% of sample C is  

removed in 4 hours. A second component has intermediate oxidative resistance, with  

T1/2 of 30-100 hours, and is responsible for the majority of sample C removal up to  

~250 hours oxidation.   

  

2.7 δ13C variation with oxidative C loss  

  

Values of δ13C for Frchar prior to K2Cr2O7 oxidation are reported in Ascough et al.,  

(2008). Following progressive K2Cr2O7 oxidation, δ13C changes are largest in the  

300°C Frchar samples (Table 3). Note that in M-300, extensive removal of sample C  

during oxidation (>99%) precluded reliable measurement of δ13C. In 300°C Frchar  

prepared under N2, the δ13C fluctuates by up to +1.2‰ during oxidation. This  

indicates progressive removal of isotopically distinct components. In 300°C Frchar  

prepared under 2% O2, significant changes in δ13C only occur after >100 hours of  

oxidation. For Frchar produced at ≥400°C, and in open fires, only small 13C variations  

occur after even ~800 hours oxidation; these changes are not correlated with wood  

species or production variables. In the 600°C pine and mangrove Frchar, δ13C changes  

are only observed after >1000 hours oxidation. These are  +0.3‰ in pine charcoal and  

+4.0‰ in mangrove charcoal.  

Values of δ13C for untreated EnvChar samples Env-7, Env-8 and Env-9 are  

reported in Ascough et al., (2011). No significant change in δ13C occurs during  

oxidation up to 1000 hours of Env-1, Env-9, Env-11 and Env-13 (Table 4). The  
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remaining 9 EnvChar samples show some change in δ13C, mainly after 24 hours  

oxidation. However even after removal of a large proportion of sample C, the changes  

in EnvChar δ13C variations are <1‰ relative to the unoxidized charcoal. A larger δ13C  

change (of up to -2.5‰) is only observed after ~300 hours oxidation in Env-12.   

  

2.8 O/C ratio variation with oxidative C loss  

  

Atomic O/C ratios of charcoal can vary with starting material (e.g. grass char versus  

wood char (Hammes et al., 2006)), however in wood charcoal, O/C ratios show an  

overall linear correlation with production temperature (Ascough et al., 2010a). By  

comparison with the O/C ratio of Frchar produced at known temperatures, the O/C ratio  

of Frchar produced on open fires (0.11) suggests production at >500°C. All Envchar  

except Env-1 have O/C ratios between 0.55-0.34, notionally equivalent to Frchar  

produced at ~250-400°C.   

Oxidative addition of oxygen atoms increases the O/C ratios of Frchar on the  

order of <0.15 (Table 3). O/C increases are slight in Frchar produced at 300°C, even  

after the loss of up to 80% sample carbon. O/C increases are larger in ≥400°C Frchar  

particularly after periods of >500 hours oxidation. These increases are larger in pine  

charcoal than in mangrove charcoal. O/C increases of up to 0.4 are observed in 600°C  

Frchar after oxidation of >4000 hours.   

Values of %O for Env-1, Env-2, Env-5, Env-6, and Env-13 prior to dichromate  

oxidation are reported in Ascough et al (2010b). In the oxidized Envchar, slight  

increases in O/C ratio are observed, but even after >1000 hours of oxidation these are  

smaller than in the Frchar (Table 4). For example, in Env-1 after >4000 hours oxidation  
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O/C increases by only 0.2. The exception is Env-2, where an O/C increase of 0.23 is  

observed after 5 hours oxidation.   

  

2.9 FTIR  

  

Fourier Transform Infrared spectra of 300°C versus 600°C FrChar produced under N2  

are significantly different (Ascough et al., 2011). The 600°C Frchar spectra are  

dominated by aromatic C=C (1590-1560 cm-1), and aromatic C-H out-of-plane  

deformation (700-900 cm-1). However 300°C FrChar also contains aliphatic CHx (1450  

cm-1), oxygenated functional groups of cellulose (1030-1160 cm-1), lignin (1510 cm-  

1), carboxylic (COOH) and carboxylate (COO-) groups (~1715 cm-1 and ~1605 cm-1,  

respectively).   

 The FTIR spectra of FrChar produced at 600°C under 2% O2 are not  

significantly different to those of samples produced under N2 (Figure 1A). This is also  

true for mangrove 300°C FrChar produced under 2% O2. However pine FrChar produced  

at 300°C under 2% O2 shows large attenuation of signal for lignocellulosic material,  

compared to equivalent sample produced under N2 (Figures 1A and 1B). This has  

been attributed to more efficient carbonization of pine charcoal in the presence of  

oxygen, which results in a more highly aromatic charcoal structure (Ascough et al.,  

2008).  

Oxidation by K2Cr2O7 does not produce major spectral alteration in  

mangrove 300°C Frchar or pine 300°C Frchar produced under 2% O2 (Figures 1A and  

1B).  In pine 300°C Frchar produced under N2 the intensity of lignocellulosic peaks is  

reduced, and intensity of the carboxylic/carboxylate peaks (~1600 cm-1 and ~1700 cm-  

1) is increased following 24 hours K2Cr2O7 oxidation. Extended oxidation of 600°C  
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Frchar up to 1008 hours results in development of a strong peak at ~1710 cm-1,  

indicating oxidation of C=C structures to form COOH groups.   

The EnvChar samples are composed overall of highly carboxylated, dominantly  

aromatic structures, with a cellulosic component in Env-5 (Ascough et al., 2011). The  

exception is Env-1, which is dominantly aromatic with a minor COOH contribution  

(~1700 cm-1) (Ascough et al., 2011).   

Cellulosic signal is removed from Env-5 after 72 hours K2Cr2O7 oxidation, and  

in Env-2 the appearance and subsequent removal of bands at 833, 852 and 884 cm-1  

indicates degradation of conjugated aromatic structures (Figure 1C). However in other  

samples spectral changes only occur after extensive oxidative loss of sample carbon.  

In the spectra of EnvChar following extensive carbon loss (i.e. after extended  

oxidation), signal from mineral components becomes prominent in several samples,  

particularly quartz (1080 cm-1). In Env-1 COOH signal increases markedly at 1713  

cm-1 after 4176 hours K2Cr2O7 oxidation, signifying oxidation of the condensed  

aromatic structure (Figure 2C).   

  

2.10 13C-CPMAS NMR spectroscopy  

  

13C-CPMAS NMR spectra of 300 °C pine and mangrove Frchar contain peaks at 60-  

105 ppm from cellulosic carbons, and at 55 ppm from lignin methoxy groups (Figures  

2A and 2B). These spectra also contain a range of signals centred at ~130 ppm and  

attributed to condensed aromatic structures. Progressive K2Cr2O7 oxidation does not  

result in major spectral alteration, although in pine 300°C Frchar there is a loss of  

intensity relating to cellulosic carbons. Signal remains in these samples from lignin  

monomers (55 and 146 ppm), plus aliphatic -CH2 and -CH3 structures (15-30 ppm).  
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The dominantly aromatic 13C-CPMAS NMR spectra from Frchar produced at 600°C  

under N2 is not significantly altered by 1000 hours of oxidation. The slight change to  

higher frequency of the shift of the aromatic band, and lower overall signal-to noise  

ratio in the spectrum, are both consistent with the loss of C-H carbons. 13C-CPMAS  

NMR spectra of Env-1 comprises a single aromatic signal centred on ~125 ppm  

(Figure 2C), with high and low frequency spinning sidebands (*), characteristic of  

charcoal produced >500 °C (Ascough et al., 2008). After 4136 hours of oxidation,  

there is a suggestion of low-intensity signals developing around 170 ppm and 190  

ppm; it is possible these could indicate formation of carboxylic and ketone groups,  

respectively.   
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3 DISCUSSION  

  
Frchar and Envchar samples show large variation in resistance to K2Cr2O7  

oxidation, highlighting important chemical differences between charcoal samples.  

During production of Frchar key chemical changes occur around 400°C. At this point  

cellulosic material is largely removed, and aromatic condensation is the dominant  

process (Eckmeier et al., 2007). Consequently, Frchar produced at ≥400°C appears  

homogeneous, largely aromatic and recalcitrant relative to the 300°C Frchar. Frchar  

produced at 400-600°C requires K2Cr2O7 oxidation on the order of several hundred  

hours before significant degradation (see also Knicker et al., 2007b). Oxidative  

degradation of ≥400°C Frchar involves carboxylation of the aromatic structure. In  

≥400°C Frchar the increases in δ13C following oxidation can be attributed to the  

preferential loss of 12C during break-up of aromatic units. This process, rather than the  

preferential loss of isotopically different compounds, is more likely to affect oxidative  

δ13C changes in ≥400°C Frchar as these samples are relatively homogeneous. However,  

it is also important to note that charcoal produced from different plant biopolymers  

(e.g. cellulose and lignin) exhibits different stabilities during K2Cr2O7 oxidation  

(Knicker, 2010). The relative proportions of carbons from different plant biopolymers  

in different charcoal samples can also vary depending on the starting material  

(Ascough et al., 2008). These factors could therefore influence the rate of δ13C change  

during oxidation between different ≥400°C Frchar samples.   

 The aromatic fraction within Frchar produced at 300°C oxidises more rapidly  

than in the 400-600°C Frchar, suggesting the domain size of polyaromatic units is  

smaller overall in the 300°C Frchar. In organized carbon structures oxidative C loss is  

more energetically favourable at sites of irregularities such as edge sites. Oxidative C  

loss is therefore more rapid in materials with smaller polyaromatic domains, as many  
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edge sites are exposed in these substances (Walker et al., 1959; Boehm et al., 1994).  

This may explain the close correspondence between initial charcoal O/C ratios and  

subsequent dichromate oxidation rates, as aromatic structures with a larger number of  

edge and defect sites are likely to contain a higher proportion of O atoms.   

 Frchar produced at 300°C is considerably more heterogeneous than Frchar  

produced at ≥400°C, containing several isotopically distinct C fractions. These appear  

to be composed of both thermally-altered, dominantly aromatic material, and plant  

biopolymers that have undergone incomplete thermal conversion. The different C  

fractions have different resistance to chemical oxidation, with the most labile being  

the incompletely converted lignocellulosic structures. This effect was also noted by  

Knicker, (2010). Some signal attributable to lignocellulosic carbons is visible in the  

FTIR and 13C-CPMAS NMR spectra of 300°C Frchar after 24 hours of oxidation  

(Figures 2 and 3). Although this signal is drastically attenuated versus the unoxidized  

samples, it indicates at least some non-aromatic carbons in charcoal can resist  

K2Cr2O7 treatment for this time. However, it is also important to note the potential for  

over-representation of lignocellulosic carbons in 13C-CPMAS NMR spectra of  

material such as charcoal, due to the slower cross polarization rates of carbons in  

polyaromatic structures (i.e. those remote from protons) versus carbons in structures  

such as cellulose, which are directly attached to protons (Alemany et al., 1983).  

Similar survival of alkyl-C and lignocellulosic material during chemical oxidation has  

been observed for soil and plant BC samples, resulting from chemical or physical  

protection within the sample matrix, including hydrophobic effects (Knicker et al.,  

2007b). This highlights the potential for over-estimation of sample BC content when  

using the dichromate oxidation method (Wolbach and Anders, 1989; Bird and Gröcke,  

1997) for BC quantification (Knicker et al., 2007b). Therefore if these effects are  
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considered likely, chemical characterization of sample residues following K2Cr2O7  

oxidation may be desirable, to ensure that the isolated material is endogenous. This is  

a consideration in BC quantification studies, but also in interpretation of fire histories,  

as BC concentrations estimated by chemical methods can differ from charcoal  

estimates made using microscopic methods.    

 The majority of Envchar samples are markedly different from the Frchar,  

particularly Frchar produced at ≥400°C and on open fires, containing at least three  

main carbon fractions of different oxidative resistance. The proportions of these vary  

widely between samples, however isotopic differences between carbon fractions  

isolated during oxidation and the unoxidized charcoal are usually <1-2‰. This is  

comparable to that expected within an individual plant (Leavitt and Long, 1984;  

McCarroll and Loader, 2004; Wilson and Grinstead, 1977), suggesting the majority of  

C in the Envchar samples is endogenous.   

 In most Envchar, ~10% of C is highly aromatic and resistant; this is the fraction  

apparent in the %C loss rate curves after ~300 hours as the rate of oxidative C loss  

reaches a minimum. The oxidation rate of this material is similar to that of C within  

Frchar produced at ≥400°C Frchar, Frchar produced in natural fires, and HOPG. However  

only Env-1 is dominantly composed of this resistant C, and in other Envchar samples,  

two further carbon fractions are visible, in contrast to the Frchar samples.  

Approximately half the Envchar samples contain a C component that is labile in the  

initial oxidation stages, typically resulting in loss of 20-30% of sample C, but  

reaching ~60% C loss in Env-5 and ~80% C loss in Env-2. This is surprisingly high,  

given that all unoxidized Envchar on visual inspection consisted of fully charred  

material with no evidence of structural degradation. Overall this component appears  

dominantly aromatic, although a small proportion of lignocellulosic material is  
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apparent in some samples (e.g. Env-5). Again, FTIR spectra show incomplete removal  

of non-aromatic components in some samples after 5 hours oxidation (Figure 3C).  

Secondly, an Envchar C component of intermediate resistance is removed  

within ~300 hours K2Cr2O7 oxidation. The major changes in Envchar during K2Cr2O7  

oxidation relate to the degradation of aromatic structures, rather than the removal of  

distinctly different chemical compounds. Sample loss at ~24-300 hours oxidation  

therefore appears to result from removal of aromatic structures that are more  

“degradable” than those remaining after 300 hours oxidation, implying a  

proportionally smaller size of aromatic domains in more labile components than in the  

more resistant fraction.   

K2Cr2O7 oxidation of the Envchar suggests that production temperatures were  

below 400°C in at least some samples, particularly those containing lignocellulosic  

structures that have undergone incomplete thermal conversion. Mean random  

reflectance (Romean) gives charcoal production temperatures of 320 ± 29°C to 361 ±  

25°C for Env-2, Env-3, Env-4, and Env-5 (Ascough et al., 2010a). It is therefore  

likely that a proportion of the least resistant C fraction (i.e removed in <24 hours  

oxidation) in Envchar represents a heterogeneous mixture of small aromatic structures  

and the remains of original plant material that had undergone incomplete thermal  

conversion during pyrolysis. An implication of these results is that such material is  

likely to be preferentially lost during K2Cr2O7 oxidation of samples containing mixed  

charcoal with a range of aromatic domain sizes.   

If Envchar samples were produced at ≥400°C, the results of chemical oxidation  

suggest that alteration has occurred in the environment, and rendered a portion of  

(originally) highly resistant carbon more susceptible to oxidation by K2Cr2O7. In Env-  

1 and Env-6 Ro-based production temperatures are 516 ± 33°C and 497 ± 25°C,  
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respectively (Ascough et al., 2010a). In Env-1 the pattern of slow, uniform, oxidative  

carbon loss is consistent with production at 500°C. However in Env-6 a range of  

carbon fractions are visible, leading to changes in C loss rates during progressive  

oxidation, inconsistent with the Ro-based production temperature. Carboxylation has  

been identified as a key process indicative of environmental diagenetic alteration in  

charcoal (Cohen-Ofri et al., 2006; Kaal et al., 2007), and it is notable that all except  

one of the Envchar samples contain prominent carboxylic and carboxylate groups. The  

exception (Env-1) comprises a homogeneous highly aromatic structure that oxidizes  

extremely slowly, suggestive of a pristine, unaltered charcoal originally produced at  

≥400°C.   

The results indicate wide variability in both the initial post-production chemical  

structure of charcoal, and in the effects of exposure to environmental conditions. The  

former are intimately linked to production variables, particularly temperature and  

starting species, and potentially dictate the susceptibility of charcoal to environmental  

alteration. It is also likely that the specific depositional environment influences the  

nature and intensity of diagenetic alteration. For example, the presence of mineral  

oxides within the soils during deposition may catalyse the degradation of the charcoal  

structure, by lowering the activation energy required for oxidative reactions (Elmquist  

et al., 2004). The redox potential and pH of the depositional environment is also likely  

to determine the rate of diagenetic processes. Chabbi et al., (2006) found that  

mineralization of recalcitrant organic carbon from lignite increased at higher redox  

potentials, while Braadbaart et al., (2009) found greater physical and chemical  

degradation of charcoal at higher pH. Biotic processes may also alter charcoal  

chemistry in the environment, via microbial mediation of degradation, the potential of  

which is highlighted in both laboratory incubations and within native soil (Shneour,  
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1966; Shindo, 1991; Petsch et al., 2001; Baldock and Smernik, 2002; Hamer et al.,  

2004; Ascough et al., 2010c). However, much further work is clearly required to  

understand the complex interplay between depositional environments and abiotic or  

biotic alteration of charcoal within the environment.   

 The interaction between production conditions and deposition environment  

considerably complicate the interpretation of chemical analyses on charcoal samples.  

A useful methodological approach in this regard may involve quantification of  

production temperature, using such techniques as mean random reflectance (Ro) or  

BCPA (e.g. Glaser et al., 1998; Scott and Glasspool, 2005). Where these techniques  

indicate production at temperatures >400°C in charcoal samples that oxidize rapidly  

in K2Cr2O7 and contain COOH groups, this may indicate post-depositional alteration  

of the aromatic structure.   

The possibility that the aromatic structure of charcoal may be mineralized during  

environmental deposition has important implications for models of carbon cycling. In  

order for such models to be accurate, it is important that the post-depositional fate of  

charcoal carbon is adequately understood and accounted for. In addition, the presence  

of a substantial proportion of original sample carbon in ancient charcoals that exists in  

forms other than that traditionally defined as BC has important implications for  

environmental studies. The material is more labile and hence likely to be more rapidly  

mineralized than the BC fraction, meaning it may be overlooked in quantification  

studies. Future quantitative investigation of the global inventory of carbon stored as  

BC within the soil should therefore not only seek to isolate the most condensed and  

recalcitrant fraction of charcoal carbon, but should also include assessments of BC  

forms that may have been subject to alteration and degradation. In soils containing  

charcoal, examples of these include the alkali-soluble, highly carboxylated, aromatic  
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substances that are operationally defined as ‘humic acids’. Several studies have shown  

that some forms of humic acid are attributable to the alteration products of charred  

biomass (Kumada, 1983; Shindo et al., 1986a; Shindo et al., 1986b; Haumeier and  

Zech, 1995; Ascough et al., 2011). Such processes appear more likely in areas with  

high oxidation rates within soils subjected to frequent fire incidence and the formation  

of ‘pyromorphic humus’ (González-Pérez et al., 2004). In summary, the results of this  

study emphasises that charcoal itself forms a continuum of carbonaceous fractions  

(see also Knicker et al., 2008), and may exhibit widely different behaviour and  

susceptibility to alteration during environmental deposition.   
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4 CONCLUSIONS  

  
Extended oxidation studies of charcoal samples reveal important differences  

between samples. These consist of differences in the chemical form in which carbon  

is hosted within charcoal, particularly with respect to oxidative resistance. The  

proportions of these different C fractions present vary considerably between charcoal  

samples and appear predominantly dependent upon i.) Production temperature, and ii.)  

Alteration during exposure to environmental conditions. In the latter case, it is likely  

that chemistry of the depositional environment and the period of exposure to  

potentially variable environmental conditions will determine the nature of charcoal  

alteration. As production temperature rises from 300°C to 600°C charcoal carbon is  

increasingly hosted in polyaromatic structures of high chemical stability, and becomes  

increasingly homogeneous. These structures have extremely high resistance to  

chemical oxidation, comparable to results for ordered graphite. Similar results are  

obtained for charcoal produced in laboratory conditions and on open fires. In contrast  

charcoal exposed to environmental conditions consists of a highly carboxylated  

aromatic structure in which three main carbon fractions are visible in oxidation rate  

curves. Despite evidence of production temperatures >400°C, the majority of carbon  

within these charcoal samples shows more rapid oxidative degradation rates than  

predicted. These results suggest a smaller size of aromatic domains in the  

environmental charcoals, and that at least some of the samples have been subject to  

post-depositional alteration. This work highlights the heterogeneity in chemical forms  

within different charcoal samples, and the fact that at least some forms of charcoal are  

subject to post-depositional alteration in the environment. Further, the use of the  

dichromate oxidation method in this way (i.e. constructing sample oxidation rate  

curves), has clear utility in revealing highly detailed information regarding the  
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chemical structure of individual charcoal samples.  Finally the results emphasize the  

importance of methodological approaches to charcoal characterization that integrate  

data from multiple analytical techniques, to improve both identification of post-  

depositional diagenetic processes, and understanding of the dynamic role of charcoal  

in depositional environments.  
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Tables 
FrChar samples EnvChar samples 

FrChar 
sample 

code 

Species Temp 
(°C) 

%O2 EnvChar 
sample 

code 

Location Available 
depositional 
description 

Age 

P-300 Pinus 
sylvestris 

300 0 Env-1 Maninjau, 
Sumatra 

Pumiceous lapilli 
and ash, under 

andisol and basaltic-
andesite lapilli1 

53400 ± 1400 14C 
yrs BP1 

P-400 Pinus 
sylvestris 

400 0 Env-2 Faial island, 
Azores  

Lahar deposit 
resulting from 

basaltic eruptions2, 

1049 ± 24 14C yrs 
BP3 

P-500 Pinus 
sylvestris 

500 0 Env-3 Langanes, 
South 

Iceland 

Basal fill of 
charcoal production 

pit4 

935 ± 35 to 960 ± 
35 14C yrs BP4 

P-600 Pinus 
sylvestris 

600 0 Env-4 Höskulsstað
ir, North 
Iceland 

Basal fill of 
charcoal production 

pit4 

895 ± 35 14C yrs 
BP4 

M-300 Rhizophora 
apiculata 

300 0 Env-5 Toca da 
Bastiana, 

Brazil  

Fluvial deposits of 
red sand and clay in 

calcareous 
rockshelter5 

129.7 ± 0.4 
pMC3 

M-400 Rhizophora 
apiculata 

400 0 Env-6 Oursi-
hubeero, 
Burkina 
Faso6,7 

Sandy soils with 
clay inclusions6,7,8 

c. 1050 AD7,8 

M-500 Rhizophora 
apiculata 

500 0 Env-7 St. Peter 
Port, 
Guernsey, 
UK9 

Ephemeral post-
holes and pits9 

6308 ± 36 14C 
years BP9 

M-600 Rhizophora 
apiculata 

600 0 Env-8 Carvalhais, 
Portugal10 

Acidic soils 
developed on 

granite 

Undated. Roman-
period deposits 

P-300-
OX 

Pinus 
sylvestris 

300 2 Env-9 Toca Nova 
do Inhare, 
Brazil5 

Sand and clay 
deposits in 
calcareous 

rockshelter5 

7355 ± 40 14C 
years BP (OxA-

16027) 

P-400- 
OX 

Pinus 
sylvestris 

400 2 Env-10 Oursi Nord, 
Burkina 
Faso6,7,8 

From settlement 
mound6,7,8 

c.1010-1160 
AD6,7,8 

P-500- 
OX 

Pinus 
sylvestris 

500 2 Env-11 Killymoon, 
Ireland 

Ashy soil overlying 
acid peat11 

2590 ± 90 14C 
years BP11 

P-600- 
OX 

Pinus 
sylvestris 

600 2 Env-12 Castro de 
Santiago, 
Portugal 

Acidic soils 
developed on 

granite12 

2748 ± 28 14C 
years BP 3 

M-300- 
OX 

Rhizophora 
apiculata 

300 2 Env-13 Pedra 
Furada, 
Brazil 

Sand and clay 
deposits in 
sandstone 

rockshelter13,14,15 

6509 ± 31 14C 
years BP 3 

M-400- 
OX 

Rhizophora 
apiculata 

400 2 - - - - 

M-500- 
OX 

Rhizophora 
apiculata 

500 2 - - - - 

M-600- 
OX 

Rhizophora 
apiculata 

600 2 - - - - 

P-N1 Pinus 
sylvestris 

Open 
fire 

Restri
cted 

- - - - 

P-N2 Pinus 
sylvestris 

Open 
fire 

Restri
cted 

- - - - 

Table 1: Descriptions of LabChar and EnvChar charcoal samples used in this study. 1Alloway et al., 2004; 2Cruz et 
al., 2006; 3Ascough et al., 2010b; 4Church et al., 2007; 5Steelman et al., 2002; 6Hallier and Petit, 2000; 7Hallier and 
Petit 2001; 8 Höhn, 2005; 9Sebire, 2005; 10Vieira, 2006; 11Hurl, 1995; 12Valera, 1997; 13Guidon and Delibrias, 
1985; 14Delibrias et al., 1988; 15Santos et al., 2003.  
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Bands (cm-1) Assignments 

3400-3300 O-H stretching of H2O 
2920 and 2850 aliphatic C-H stretching 

2550 H-bonded carboxylic groups 
1715 C=O stretching in COOH 
1605 Ionized carboxyl groups 

1600-1562 C=C vibrations of aromatic structures 
1510 Aromatic C=C ring stretching (lignin) 
1450 Aliphatic CH deformation 

1430-1420 Aromatic C=C ring stretching 
1380 COO- 
1250 C-O stretching and O-H deformation in COOH, C-O stretching in phenol 
1160 C-O-C of glycosidic links 
1110 Pyranose ring carbons in cellulose 

1060-1030 Aliphatic ether C-O- and alcohol C-O stretching 
870 1 adjacent H deformation 
810 2 adjacent H deformation 

780-770 Aliphatic CH2 deformation 
750 3-4 adjacent H deformation 

Table 2: FTIR peak assignments used in analysis of spectra obtained within this study, 
based on published assignments from Guo and Bustin, (1998); Nishimiya et al., 
(1998); Moore and Owen, (2001).  
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Sample code Oxidation time 

(hrs) 
C loss 
(%) 

δ13C ∆δ13C %O O/C ∆ 
O/C 

P-300 0 0.00 -27.19 0.00 28.7 0.34  
 0.5 41.62 -26.92 0.27 32.7 0.43 0.09 
 1 80.77 -26.73 0.46 34.4 0.46 0.12 
 2 79.47 -26.76 0.43 - - - 
 4 80.26 -27.59 -0.40 - - - 
 6 73.87 -27.21 -0.02 - - - 
 8 74.57 -27.51 -0.32 - - - 
 24 90.51 -27.56 -0.37 27.5 0.36 0.02 
 71 91.28 -26.65 0.54 - - - 
 120 99.30 -26.39 0.80 - - - 

P-400 0 0.00 -27.59 0.00 18.3 0.18 - 
 24 12.60 -27.67 -0.08 - - - 
 75 16.66 -27.61 -0.02 19.3 0.20 0.02 
 144 22.86 -27.62 -0.03 - - - 
 792 46.62 -27.64 -0.06 23.1 0.27 0.09 

P-500 0 0.00 -27.91 0.00 11.0 0.10 - 
 144 35.50 -27.52 0.39 13.6 0.15 0.05 
 504 47.85 -27.62 0.29 - - - 
 792 46.09 -27.62 0.29 24.4 0.29 0.16 

P-600 0 0.00 -27.86 0.00 7.0 0.06 - 
 504 13.57 -27.61 0.25 17.9 0.19 0.13 
 4176 98.51 -27.51 0.35 30.3 0.45 0.39 

M-300 0 0.00 -27.61 0.00 24.1 0.26 - 
 0.5 8.25 -26.41 1.20 23.8 0.26 0.00 
 1 41.72 -26.34 1.27 24.8 0.27 0.01 
 2 12.26 -26.48 1.13 - - - 
 4 15.15 -26.43 1.18 - - - 
 6 25.44 -26.44 1.17 - - - 
 8 21.98 -26.44 1.17 - - - 
 24 29.05 -26.35 1.26 24.7 0.28 0.02 
 72 32.71 -26.38 1.23 25.1 0.28 0.02 
 120 57.84 -27.71 -0.10 - - - 
 152 66.27 -27.63 -0.02 - - - 
 267 77.20 -27.64 -0.03 - - - 
 432 99.58 - - - - - 

M-400 0 0.00 -28.31 0.00 15.2 0.15 - 
 24 6.62 -28.40 -0.09 - - - 
 71 7.64 -28.21 0.10 17.7 0.18 0.02 
 144 12.60 -28.43 -0.12 - - - 
 792 37.21 -28.25 0.06 19.1 0.22 0.06 

M-500 0 0.00 -28.72 0.00 10.6 0.09 - 
 144 10.48 -28.67 0.05 12.4 0.11 0.02 
 504 7.51 -28.63 0.09 - - - 
 792 9.27 -28.66 0.06 16.3 0.16 0.07 
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M-600 0 0.00 -28.63 0.00 7.5 0.07 - 
 792 8.11 -28.48 0.15 - - - 
 4176 94.64 -26.36 2.26 33.8 0.47 0.40 

P-300-OX 0.00 0.00 -27.33 0.00 28.1 0.31 - 
 2.00 7.96 -27.29 0.04 26.7 0.29 -

0.02 
 6.00 12.91 -27.28 0.06 - - - 
 9.00 10.09 -27.21 0.12 - - - 
 24.00 20.27 -27.38 -0.04 - - - 
 71.00 20.32 -27.40 -0.07 24.3 0.28 0.03 
 120.00 34.04 -27.32 0.01 - - - 
 152.00 37.03 -27.36 -0.03 - - - 
 267.00 62.43 -27.45 -0.12 - - - 
 432.00 90.48 -27.61 -0.28 - - - 

P-400- OX 0 0.00 -27.43 0.00 25.3 0.29 - 
 24 2.37 -27.60 -0.17    
 75 3.78 -27.51 -0.08 26.6 0.30 0.01 
 144 13.84 -27.67 -0.24    
 792 28.34 -27.62 -0.19 30.4 0.37 0.08 

P-500- OX 0 0.00 -27.86 0.00 13.2 0.13 - 
 144.0 28.04 -27.85 0.01 23.4 0.27 0.14 
 456.0 41.46 -27.97 -0.11    
 504 51.59 -28.04 -0.18    
 792 52.42 -27.90 -0.04 24.4 0.29 0.16 
 792 43.13 -27.93 -0.07    

P-600- OX 0 0.00 -28.25 0.00 6.3 0.05 - 
 504 10.62 -28.05 0.20 19.4 0.20 0.14 
 792 15.33 -28.03 0.22 - - - 

M-300- OX 0 0.00 -27.49 0.00 23.29 0.26 - 
 2 24.70 -27.56 -0.07 - - - 
 6 41.57 -27.44 0.05 - - - 
 9 36.38 -27.31 0.18 - - - 
 24 59.57 -27.29 0.20 - - - 
 71 47.05 -27.37 0.12 24.6 0.28 0.02 
 120 76.07 -27.17 0.32 - - - 
 150 78.97 -26.95 0.54 - - - 
 267 90.13 -26.94 0.55 - - - 
 432 99.23 -27.34 0.15 - - - 

M-400- OX 0 0.00 -28.11 0.00 18.6 0.19 - 
 24 8.76 -28.09 0.02 - - - 
 71 8.18 -27.81 0.30 20.5 0.21 0.02 
 144 15.83 -28.01 0.10 - - - 
 792 36.63 -27.93 0.18 24.7 0.28 0.09 

M-500- OX 0 0.00 -28.41 0.00 9.5 0.08 - 
 144 7.45 -28.06 0.35 14.3 0.14 0.05 
 504 11.94 -28.24 0.17 - - - 
 792 12.23 -28.14 0.27 20.3 0.20 0.12 

M-600- OX 0 0.00 -28.37 0.00 5.6 0.05 - 



 46 

 504 9.93 -28.19 0.18 14.79 0.15 0.08 
 792 13.11 -28.27 0.10 - - - 
 1008 16.38 -24.4 3.97 - - - 

P-N1 0 0.00 -27.70 0.00 9.4 0.09 - 
 8 15.65 -27.77 -0.07 - - - 
 120 14.18 -27.71 -0.01 - - - 
 240 12.99 -27.50 0.20 24.9 0.27 0.18 

P-N2 0 0.00 -24.73 0.00 9.5 0.08 - 
 8 11.09 -24.84 -0.11 - - - 
 24 5.21 -24.93 -0.20 11.2 0.10 0.02 
 120 4.07 -24.83 -0.11 - - - 
 240 3.30 -24.79 -0.06 14.9 0.14 0.06 

HOPG  0 0.00 -45.23 0.00 - - - 
 2 6.27 -45.33 -0.10 - - - 
 6 8.57 -45.28 -0.05 - - - 
 144 12.72 -45.32 -0.09 - - - 

Table 3: Carbon loss (wt %), δ13C, %O and atomic O/C ratios of FrChar samples and 

HOPG with progressive K2Cr2O7 oxidation.  
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Sample 

code 
Oxidation time 

(hrs) 
C loss 
(%) 

δ13C ∆δ13C %O O/C ∆ 
O/C 

Env-1 0 0.00 -24.45 0.00 9.15 0.09 - 
 4 4.14 -24.38 0.07 - - - 
 120 2.43 -24.58 -0.13 10.9 0.10 0.01 
 744 9.25 -24.32 0.13 - - - 
 1008 7.76 -24.39 0.06 - - - 
 4176 46.17 -24.05 0.39 24.77 0.28 0.20 

Env-2 0 0.00 -22.71 0.00 30.18 0.37 - 
 4 88.88 -22.25 0.46 - - - 
 5 88.87 -22.59 0.12 32.80 0.68 0.31 
 6 93.41 -22.38 0.33 - - - 
 8 92.97 -22.33 0.37 - - - 
 10.3 95.09 -22.26 0.45 10.3 0.45 0.09 

Env-3 0 0.00 -26.76 0.00 26.39 0.37 - 
 6 6.45 -26.76 0.00 - - - 
 24 11.75 -26.70 0.06 - - - 
 48 32.02 -26.45 0.31 - - - 
 72.00 47.15 -26.26 0.50 26.19 0.37 0.00 
 118.5 68.15 -26.26 0.50 27.13 0.39 0.02 
 242 78.80 -26.20 0.56 - - - 
 360 87.67 -25.93 0.83 34.85 0.47 0.10 
 700 94.02 -26.17 0.59 - - - 

Env-4 0 0.00 -28.02 0.00 25.63 0.30 - 
 6 21.31 -27.98 0.04 - - - 
 24 36.01 -28.07 -0.04 - - - 
 48 62.51 -27.95 0.07 30.32 0.39 0.09 
 118.5 79.32 -28.16 -0.14 28.42 0.37 0.07 
 168 82.78 -28.24 -0.22 - - - 
 216 80.87 -27.80 0.22 - - - 
 504 91.72 -28.59 -0.57 - - - 
 1053 94.79 -28.58 -0.55 24.04 0.30 0.00 

Env-5 0 0.00 -26.55 0.00 25.91 0.32 - 
 4 51.20 -26.76 -0.21 - - - 
 24 58.40 -26.90 -0.35 - - - 
 48 70.77 -26.82 -0.27    
 72 69.36 -26.91 -0.36 31.88 0.44 0.12 
 118.5 79.27 -27.01 -0.46 33.10 0.43 0.11 
 242 87.85 -26.99 -0.44 - - - 
 336 92.37 -26.97 -0.42 - - - 
 1053 95.88 -27.00 -0.45    

Env-6 0 0.00 -24.90 0.00 22.19 0.25 - 
 4 15.14 -24.26 0.64 - - - 
 24 22.09 -24.22 0.68 - - - 
 48 24.66 -24.36 0.54    
 72 35.07 -24.08 0.83 25.41 0.31 0.06 
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 120 40.21 -24.08 0.83 28.47 0.35 0.10 
 242 58.66 -24.06 0.85 - - - 
 336 79.92 -24.70 0.20 - - - 
 504 78.85 -24.49 0.41 - - - 
 700 84.20 -24.76 0.15 - - - 
 840 92.79 -24.63 0.27    
 1053 99.35 -24.48 0.42 31.34 0.41 0.16 

Env-7 0 0.00 -26.90 0.00 34.72 0.41 - 
 6 26.08 -26.75 0.14 - - - 
 12 32.43 -26.77 0.12 - - - 
 24 43.10 -26.65 0.25 - - - 
 72 69.50 -26.31 0.58 37.97 0.53 0.12 
 118.5 79.97 -26.51 0.39 34.00 0.45 0.04 
 242 88.45 -26.35 0.55 - - - 
 336 94.44 -27.01 -0.11 - - - 
 700 97.87 -26.63 0.27 - - - 
 1053 96.75 -27.00 -0.10 28.92 0.48 0.07 

Env-8 0 0.00 -25.91 0.00 34.31 0.40 - 
 6 26.49 -25.67 0.24 - - - 
 12 33.92 -25.61 0.30 - - - 
 24 35.96 -25.83 0.08 - - - 
 72 60.02 -25.14 0.77 37.05 0.52 0.11 
 118.5 83.92 -24.97 0.94 30.84 0.44 0.04 
 336 97.25 -25.39 0.52 - - - 
 1053 98.04 -26.42 -0.51 17.61 0.45 0.05 

Env-9 0 0.00 -27.79 0.00 28.52 0.33 - 
 4 13.05 -27.90 -0.10 - - - 
 24 17.67 -27.82 -0.03 - - - 
 72 27.04 -27.92 -0.13 31.31 0.38 0.05 
 118.5 36.23 -27.81 -0.01 24.37 0.29 -0.04 
 242 37.61 -27.76 0.03 - - - 
 336 48.29 -27.87 -0.07 - - - 
 504 49.11 -27.86 -0.07 - - - 
 700 48.94 -27.93 -0.14 - - - 
 720 46.24 -27.91 -0.12 - - - 
 1008 36.92 -28.01 -0.21 23.27 0.27 -0.06 

Env-10 0 0.00 -24.65 0.00 34.96 0.37 - 
 4 19.58 -24.64 0.00 - - - 
 24 24.28 -24.69 -0.04 - - - 
 48 34.37 -24.83 -0.19 - - - 
 72 64.63 -24.45 0.20 36.26 0.58 0.20 
 118.5 67.95 -24.48 0.17 23.45 0.29 -0.08 
 242 78.34 -24.65 0.00 - - - 
 336 92.75 -24.62 0.03 - - - 
 504 91.07 -24.74 -0.09 - - - 
 700 98.96 -25.20 -0.56    
 1053 97.90 -25.43 -0.79 8.15 0.39 0.01 

Env-11 0 0.00 -25.94 0.00 29.13 0.33 - 
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 6 15.66 -25.87 0.07 - - - 
 12 23.66 -25.84 0.11 - - - 
 24 27.16 -25.78 0.16 - - - 
 72 32.92 -25.83 0.11 27.28 0.35 0.02 
 118.5 50.85 -25.85 0.10 30.29 0.38 0.05 
 242 68.39 -25.90 0.04 - - - 
 336 68.64 -26.08 -0.14 - - - 
 700 77.67 -26.11 -0.17 - - - 
 1053 74.01 -26.11 -0.17 27.62 0.33 0.00 

Env-12 0 0.00 -23.58 0.00 28.81 0.33 - 
 6 22.32 -23.49 0.08 - - - 
 12 28.91 -23.44 0.14 - - - 
 24 28.79 -23.29 0.28 - - - 
 72 39.84 -23.26 0.31 23.95 0.29 -0.04 
 120 47.46 -23.05 0.53 23.22 0.27 -0.06 
 242 70.55 -25.30 -1.72 - - - 
 456.0 74.39 -25.60 -2.03 - - - 
 504 83.67 -25.81 -2.23 - - - 
 700 87.52 -26.09 -2.52 - - - 
 840 94.93 -25.89 -2.32 - - - 

Env-13 0 0.00 -26.83 0.00 32.81 0.35 - 
 4 24.00 -26.76 0.06 - - - 
 120 46.91 -26.69 0.14 24.20 0.29 -0.07 
 336 73.13 -26.62 0.21 - - - 
 700 85.90 -26.61 0.22 - - - 
 1053 76.13 -26.59 0.23 36.65 0.53 0.17 

Table 4: Carbon loss (wt %), δ13C, %O and atomic O/C ratios of EnvChar samples with 

progressive K2Cr2O7 oxidation. 
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FIGURES 
 
Figure 1A: FTIR of Pine FrChar with progressive K2Cr2O7 oxidation showing changes 

in samples produced at 300°C (above) and 600°C (below). Hours of oxidation are 

indicated alongside spectra. Unoxidized (i.e. 0 hrs) spectra for P-300 and P-600 are 

described in Ascough et al., 2011. 
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Figure 1B: FTIR of Mangrove FrChar with progressive K2Cr2O7 oxidation showing 

changes in samples produced at 300°C (above) and 600°C (below). Hours of 

oxidation are indicated alongside spectra. Unoxidized (i.e. 0 hrs) spectra for M-300 

and M-600 are described in Ascough et al., 2011. 
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Figure 1C: FTIR of EnvChar with progressive K2Cr2O7 oxidation. Hours of oxidation 

are indicated alongside spectra. Unoxidized (i.e. 0 hrs) spectra of Env-1, Env-2, Env-5 

and Env-6 are described in Ascough et al., 2011.  
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Figure 2A: 13C-CPMAS NMR spectra of Pine FrChar produced under N2 at 300°C 

(bottom) and 600°C (top) showing unoxidized samples (0 hrs) and samples following 

progressive K2Cr2O7 oxidation. Spinning side bands are indicated by *. 
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Figure 2B: 13C-CPMAS NMR spectra of Mangrove FrChar produced under N2 at 

300°C (bottom) and 600°C (top) showing unoxidized samples (0 hrs) and samples 

following progressive K2Cr2O7 oxidation. Spinning side bands are indicated by *. 

 
Figure 2C: EnvChar 13C-CPMAS NMR spectra (Env-1 and Env-2) showing unoxidized 

samples (0 hrs) and samples following progressive K2Cr2O7 oxidation. Spinning side 

bands are indicated by *.  
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