
Knowl Inf Syst
DOI 10.1007/s10115-016-1012-2

REGULAR PAPER

Random indexing of multidimensional data

Fredrik Sandin1 · Blerim Emruli2 ·
Magnus Sahlgren3

Received: 3 September 2014 / Revised: 30 May 2016 / Accepted: 18 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Random indexing (RI) is a lightweight dimension reduction method, which is
used, for example, to approximate vector semantic relationships in online natural language
processing systems. Here we generalise RI to multidimensional arrays and therefore enable
approximation of higher-order statistical relationships in data. The generalised method is a
sparse implementation of random projections, which is the theoretical basis also for ordinary
RI and other randomisation approaches to dimensionality reduction and data representation.
We present numerical experiments which demonstrate that a multidimensional generalisa-
tion of RI is feasible, including comparisons with ordinary RI and principal component
analysis. The RI method is well suited for online processing of data streams because rela-
tionship weights can be updated incrementally in a fixed-size distributed representation, and
inner products can be approximated on the fly at low computational cost. An open source
implementation of generalised RI is provided.

Keywords Data mining · Random embeddings · Dimensionality reduction · Sparse coding ·
Semantic similarity · Streaming algorithm · Natural language processing

1 Introduction

There is a rapid increase in the annual amount of data that is produced in almost all domains
of science, industry, economy, medicine and even everyday life. We have surpassed a critical
point where more data are generated than we can physically store. Choosing which data
to archive and process and which to discard is necessary in data-intensive applications.

B Fredrik Sandin
fredrik.sandin@ltu.se

1 EISLAB, Luleå University of Technology, 971 87 Luleå, Sweden

2 SICS Swedish ICT, 722 13 Västerås, Sweden

3 SICS Swedish ICT, 164 29 Kista, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-016-1012-2&domain=pdf
http://orcid.org/0000-0001-5662-825X

F. Sandin et al

That trend motivates the development of new methods for data representation and analysis
[2,23,49].

One interesting approach to analyse large data sets is to search for outstanding relationships
between “features” in the data. Problems of that type naturally appear in the form of context- or
time-dependent relationships. For example, the co-occurrence of words in articles, blogs and
so on is one type of relationship that carries information about language use and evolution over
time [46]. Similarly, co-occurrence analysis can be used to investigate the general opinion
about things, for example public events or politicians, and how the opinion changes over
time [51]. The analysis requires averaging over many instances of relationships in order to
identify frequent or otherwise significant patterns in a noise-like background. That is a non-
trivial problem because the number of possible relationships between elements of the sets
Ai scales like O(�i |Ai |), where |Ai | denotes the cardinality of the set Ai . In the example
of online text analysis |A| ∼ 105, which implies ∼1010 co-occurrence weights that evolve
over time and typically depend on additional context variables of interest. Therefore, the
number of relationship weights that need to be stored and updated in such applications can
be astronomical, and the analysis prohibitive given the large size of the data representation.

This is the motivation of random indexing (RI) [31], which is a random-projection method
that solves such problems by incrementally generating distributional representations that
approximate similarities in sets of co-occurrence weights. For example, in the context of
natural language processing the RI method is used to compress large word–document or
word–context co-occurrence matrices [52]. This is done by associating each document or
context with a sparse random ternary vector of high dimensionality [29,30], a so-called
index vector. Each word is also represented by a high-dimensional vector of integers, a so-
called distributional vector. These distributional vectors are initially set to zero, and for each
appearance of a particular word in a context, the index vector of that context is added to
the distributional vector of the word. The result of this incremental process is that words
that appear in similar contexts get similar distributional vectors, indicating that they are
semantically related [44]. Therefore, the analysis of semantic similarity can be performed
by comparing the compressed distributional vectors in terms of inner products, instead of
analysing and storing the full co-occurrence matrix. The distributional vectors can be updated
on the fly in streaming applications by adding the appropriate sparse index vectors and co-
occurrence weights to the distributional vectors. See Sahlgren [42,43] for further details.

LSA [14] and HAL [36] are two other prominent examples of vector-space models [52]
used for semantic analysis of text. In these methods, a co-occurrence matrix is explicitly
constructed, and then singular value decomposition (SVD) is used to identify the semantic
relationships between terms (see [8] for recent examples). This process requires significant
storage space for the full co-occurrence matrix, and it is a computationally costly method. The
SVD can be calculated using parallel and iterative methods optimised for sparse matrices [4],
but the computational cost still prevents the processing of large and streaming data sets [11]. In
contrast, RI easily scales to large corpora such as the MEDLINE collection of approximately
9 million abstracts [10]. Another approach known as locality-sensitive hashing (LSH) [7] is
compared with RI on a distributional similarity task by Gorman and Curran [21], showing
that RI outperforms LSH in terms of efficiency and accuracy when the problem size increases.
RI requires a fraction of the memory and processing power of LSA and HAL [11], but is
comparable with models based on SVD in terms of accuracy. For example, the accuracy of
RI is comparable to SVD-based methods in a TOEFL synonym identification task [31], and
that result has been further improved in the case of RI [45]. RI of co-occurrence matrices for
semantic analysis works surprisingly well [11,30,43,52], and the method has been adopted in
other applications, such as indexing of literature databases [54], event detection in blogs [26],

123

Random indexing of multidimensional data

web user clustering and page prefetching [57], graph searching for the semantic web [12],
diagnosis code assignment to patients [24], predicting speculation in biomedical literature
[55] and failure prediction [19]. In general, there is an increasing interest for randomisation
in information processing because it enables the use of simple algorithms, which can be
organised to exploit parallel computation in an efficient way [6,22].

The practical usefulness of RI is also demonstrated by several implementations in public
software packages such as the S-Space Package [27] and the Semantic Vectors Package [58],
and extensions of the basic method to new domains and problems [26,54]. Therefore, it is
natural to ask whether the RI algorithm can be generalised to higher-order relationships and
distributional arrays.

In the next section we generalise RI of vectors to RI of multidimensional data in the form of
matrices and higher-order arrays. Subsequently, we present results of simulation experiments
of ordinary and generalised RI demonstrating some properties of the generalised method,
including a comparison with principal component analysis (PCA). PCA and similar approx-
imation methods for higher-order arrays such as Tucker decomposition [34] are expected to
result in higher signal-to-noise ratio (SNR) than RI when applicable because the dimension
reduction is optimised to minimise the residual variance. However, such methods are more
complex and target another application domain. We conclude that the possibility to incremen-
tally encode and analyse general co-occurrence relationships at low computational cost using
a distributed representation of approximately fixed size makes generalised RI interesting for
online processing of data streams.

2 Method

In ordinary RI [31,42], the index vectors r(x j) are used to calculate distributional vectors
s(xi) by adding the index vectors of the context items x j to the distributional vector of word
xi every time that word occurs in the data. This can be formalised as

s(xi) ← s(xi) +
c∑

j=−c, j �=0

w(xi+ j)π jr(xi+ j), (1)

where c is the number of items surrounding a word that defines the context window, w(x j)
is a weight function that quantifies the importance of a context item x j , and π j is an optional
permutation operator that makes the context window word-order dependent [45]. This way
RI can, for example, be used to identify words that appear in similar contexts by analysing the
inner products of the distributional vectors, s, thereby greatly simplifying the co-occurrence
analysis problem outlined above.

In the following we refer to RI of vectors as one-way RI and generalise one-way RI to
n-way RI of arrays ai1,i2,i3,...,iN of arbitrary order, meaning that there are n sets of index
vectors associated with each dimension of the array. We focus on the core RI mechanism
and omit extensions like the word-order-dependent permutation introduced above in order
to make the presentation more accessible. Array elements are denoted with ai1,i2,i3,...,iN , or
aī for short, and the indices {i1, i2, i3, . . . , iN } are used in array element space. The array
elements are encoded in a distributed fashion in states that are denoted with sα1,α2,α3,...,αN ,
or sᾱ for short. The indices {α1, α2, α3, . . . , αN } are used in state space. We use the notation
iD when referring to indices of the array space and αD when referring to indices of the state
space, where D is the dimension index. For vectors D = 1, for matrices D ∈ {1, 2} and

123

F. Sandin et al

in general D ∈ [1,N]. When necessary we use one additional index, jD , in array element
space. Similarly, one additional state-space index, βD , is used when necessary.

States have physical representations that are stored in memory, but they are only accessed
using particular decoder and encoder functions (introduced below) which generalise (1) for
vectors to arrays of arbitrary order. The array elements are related to the states by a random
projection [56] mechanism and constitute the input to the encoder function and the output
from the decoder function, respectively. The order of the state array, N , is equivalent to
that of the array. The core idea is that the state array can be of significantly smaller size
than the array itself and that approximate vector semantic analysis can be performed in
state space at low computational cost. Similarly, the set of distributional vectors, s, in (1)
have few elements compared to the full co-occurrence matrix. This possibility follows from
the Johnson–Lindenstrauss lemma [25], which describes the mapping of points in a high-
dimensional space to a space of lower dimension so that the distances between points are
approximately preserved. Further developments of the Johnson–Lindenstrauss lemma and
related applications can be found, for example, in [1,13,18,28,38].

2.1 Random indexing

For each index of the array, iD , there is an associated random-index array, rD,iD,αD . If D
and iD are fixed, the state-space elements of rD,iD,: form a sparse high-dimensional ternary
vector, a so-called index vector

rD,iD,: = [. . . 0 0 0 1 0 0 0 . . . 0 0 0 −1 0 0 0 . . .]D,iD . (2)

Index vectors have a few nonzero elements at random positions αD , hence the name “random
index”. The nonzero elements of an index vector have an absolute value of one, and half
of these values are negative. In other words, index vectors are sparse ternary vectors with
elements called trits. This definition simplifies to ordinary RI, r(x j) in (1), in the case of
N = 1.

The number of nonzero trits in the index vectors, χD , is a model parameter that typically
has a value of order ten [42]. Therefore, as we explain in the following sections, each index
vector defines a random projection on a sparse subset of the states. We denote the ranges of
state indices, αD , with [1, LD] so that, for example, α1 ∈ [1, L1] and α2 ∈ [1, L2]. Similarly,
the ranges of the element indices, iD , are [1, ND]. The length of an index vector is equivalent
to the maximum value of the state index, LD , in each dimension. For example, if the state
array of a matrix is of size 1000×2000 the index vectors would be of length 1000 for D = 1
and 2000 for D = 2, respectively. Index vectors can be represented in compact form because
most of the elements are zero. Here the indices of the nonzero trits are used to represent the
index vectors, and the signs are implicitly encoded with the position of the indices so that
the first half of the list of indices are associated with positive signs. The number of nonzero
trits in an index vector, χD , is an even number. For each dimension, D, there are ND index
vectors of length LD , and each index vector has χD nonzero trits. In practical applications,
an index vector is represented in compact form by at most a few dozen integers. Therefore,
the storage space required for higher-order RI representations is practically determined by
the size of the state array. A summary of parameters and their definitions is presented in
Table 1.

The notation and definitions introduced above are a direct generalisation of ordinary RI
to arrays of arbitrary order. In particular, ordinary RI is defined by N = 1. Note that the
states defined here correspond to the elements of the distributional vectors in ordinary RI,
which are the hard storage locations where the distributional statistics are stored. Next we

123

Random indexing of multidimensional data

Table 1 Summary of parameters

Expression Description

ai1,i2,i3,...,iN , aī Array elements

sα1,α2,α3,...,αN , sᾱ State array, accessed by encoder/decoder functions

N Dimensionality of array

D Dimension index, 1 ≤ D ≤ N
ND Number of index vectors in dimension D, iD ∈ [1, ND]
LD Length of index vectors in dimension D, αD ∈ [1, LD]
χD Number of nonzero trits in index vectors of dimension D
Se = ∏

D χD Number of states that encode one array element

Ss ∝ ∏
D LD Disk/memory space required to store the state array

Sr ∝ ∑
D NDχD Disk/memory space required to store index vectors

present the corresponding generalised encoding algorithm and generalised method for vector
semantic analysis in terms of inner products.

2.2 Encoding algorithm

The states, sᾱ , are initially set to zero (st=0
ᾱ = 0), which implies that the array elements, aī ,

are zero also (see Sect. 2.3 for details). In a typical application of RI, the array elements are
incrementally updated, for example, by adding co-occurrence weights derived from streaming
text to the array elements in a cumulative manner like in (1). An array element, aī , is encoded
in the state array, sᾱ , in a sparse and distributed fashion using a random projection defined by
the product of index vectors. Addition of a scalar weight, wi1,i2,i3,...,iN , to a particular array
element, aī , is defined by

stᾱ = st−1
ᾱ + wī

N∏

D=1

rD,iD,αD , (3)

where the indices ī are determined by the choice of array element and stᾱ (st−1
ᾱ) denotes

the resulting (current) state array. By applying (3) in an iterative fashion the weights of
array elements can be incrementally updated, without modifying the random projections or
recalculating substantial parts of the state array. Furthermore, this definition implies that the
indices of an array element are used to select a particular set of index vectors, forming an
outer product of “nearly orthogonal”, or so-called indifferent index vectors in state space (see
“Appendix” for further details).

The outer product of index vectors in (3) is a sparse array that has Se nonzero elements
with values of either +1 or −1, where

Se =
N∏

D=1

χD. (4)

The computational cost of the encoding algorithm is proportional to Se, which is constant.
Therefore, the encoding complexity for an input sequence of length n is O(n) for RI of any
order, which is lower than the complexity of streaming PCA [39]. Furthermore, new array
elements (relationship weights) can be added to the representation with low impact on the

123

F. Sandin et al

representation size; see the discussion in Sect. 2.1. These two properties make the generalised
RI algorithm interesting for streaming data applications.

Subtraction of wī is defined by the replacement wī → −wī in (3). Assignment of array
elements is not defined because of the distributional nature of the representation of array
elements.

2.3 Decoding algorithm

Vector semantic analysis can be performed in state space, without the need to first decode
array elements. This is key because decoding and explicit processing of array elements are a
computationally costly operation. It is anyway instructive to outline a generalised decoding
procedure for multidimensional RI. The decoding operation is a projection of the state array
on the index vectors that correspond to each particular array element

aī = 1

Se

L1∑

α1=1

L2∑

α2=1

L3∑

α3=1

· · ·
LN∑

αN =1

sα1,α2,α3,...,αN

N∏

D=1

rD,iD,αD , (5)

where S−1
e is a normalisation factor defined above that compensates for the redundancy of

the distributed representation of aī in the states, sᾱ . The complexity of this algorithm is
comparable to that of the encoding algorithm outlined above because Se different states are
processed in both cases.

The encoding procedure (3) is a sequence of outer products of indifferent index vectors, and
the decoding procedure is the corresponding sequence of inner products. It follows from (3)
and (5) that the decoded value is an exact reconstruction of the accumulated encoded weight
if all index vectors are orthogonal. However, that process would be useless in the context
considered here because no dimension reduction is achieved in that case. For index vectors of
length LD , at most LD linearly independent vectors can be constructed (a set of basis vectors).
For high values of LD there are many more vectors that are approximately orthogonal; see
“Appendix” for details, which makes it possible to encode and decode approximate array
elements in a small state space provided that the data are sufficiently sparse (see Sect. 3 for
details).

Combining the encoding operation (3) and the decoding operation (5) the following expres-
sion results for the decoded weight, w̃ī , of an array element

w̃ī = 1

Se

L1∑

α1=1

L2∑

α2=1

L3∑

α3=1

· · ·
LN∑

αN =1

(
εᾱ + wī

N∏

D=1

rD,iD,αD

) N∏

D=1

rD,iD,αD (6)

= 1

Se

∑

ᾱ

(
εᾱ

N∏

D=1

rD,iD,αD + wī

N∏

D=1

r2
D,iD,αD

)
(7)

= εī + wī

Se

N∏

D=1

χD (8)

= εī + wī . (9)

Here εᾱ indicates the noise associated with the distributed coding of the weights and the non-
orthogonality of the index vectors, resulting in an absolute error εī = w̃ī − wī of decoded
weights. We return to the discussion of the error term, εī , in the next section, which presents
simulation results. Partial results that may be helpful to derive analytical bounds on εī are
included in “Appendix”.

123

Random indexing of multidimensional data

2.4 Generalised vector semantic analysis

The RI method that is used in natural language processing is based on distributional vectors
[30,31,42,43]. Each term that appears in a text corpus is associated with a distributional
vector, and each context or document is associated with a ternary index vector; see (1).
Therefore, a distributional vector corresponds to the states of a one-dimensional RI array,
N = 1, and the conventional index vectors correspond to the ternary index vectors of that
array. The definition of the encoding operation (3) reduces to ordinary RI (1) in the case of
one-way RI of vectors and constitutes a natural generalisation of RI to higher-order arrays.

A central aspect of RI is that the distributional vectors, s, which are aggregated repre-
sentations of encoded semantic relationships, can be used for direct comparison of semantic
similarity using, for example, an inner-product, s1 · s2, or cosine-of-angle measure. That
approach is similar to the seminal works by Papadimitriou et al. [41], Kaski [33] and oth-
ers [5,17], which are motivated by the Johnson–Lindenstrauss lemma [25]. In the case of
generalised RI developed here, a similar method can be derived from (5) by considering the
following inner product of decoded weight-vectors,

N1∑

i1= j1=1

aī a j̄ = S−2
e

N1∑

i1= j1=1

⎛

⎝
∑

ᾱ

sᾱ

N∏

D=1

rD,iD,αD

⎞

⎠

⎛

⎝
∑

β̄

sβ̄

N∏

D=1

rD, jD,βD

⎞

⎠ (10)

= S−2
e

N1∑

k=1

⎛

⎝
L1∑

α1=1

r1,k,α1

L2∑

α2=1

L3∑

α3=1

· · ·
LN∑

αN =1

sᾱ

N∏

D=2

rD,iD,αD

⎞

⎠

×
⎛

⎝
L1∑

β1=1

r1,k,β1

L2∑

β2=1

L3∑

β3=1

· · ·
LN∑

βN =1

sβ̄

N∏

D=2

rD, jD,βD

⎞

⎠ , (11)

where the indices {i2, i3 . . . iN } and { j2, j3 . . . jN } are constant and specify one particular
inner product (one relationship). The sums over ᾱ and β̄ have relatively few nonzero terms
due to the sparse structure of the index vectors. The sum over i1 = j1 = k has many terms
and needs to be approximated in order to reduce the computational complexity of the method,
which is necessary in order to enable large-scale explorative studies of semantic similarity.

The vectors r1,k,: in (11) are sparse ternary vectors defined by (2) that maps each value
of k to multiple values of α1 and β1 for which there are nonzero contributions from the
sum over states to the inner product. More specifically, the number of such values for α1

and β1 is exactly χ1 for each value of k, which implies that there are χ1 nonzero “terms”
in each of the sums over α1 and β1. Therefore, the explicit evaluation of the inner product
involves pseudorandom sampling of state indices α1 and β1, which can be approximated
with an explicit sum over all possible values of these state indices. Therefore, the number of
terms in the sums over k and α1 (and β1) is reduced from χ1N1 to L1, which is a significant
improvement. This is analogous to ordinary RI, where the distributional vectors, s in (1),
are compared for similarity directly, without prior decoding (inverse random projection)
of word–context co-occurrence weights. Furthermore, the accuracy of the approximation
can be improved by averaging the states selected by the constant indices {i2, i3 . . . iN } and
{ j2, j3 . . . jN }, resulting in the following state-space approximation for the inner product

N1∑

i1= j1=1

aī a j̄ ∝
L1∑

α1=β1=1

〈
sᾱ

N∏

D=2

rD,iD,αD

〉

αD

〈
sβ̄

N∏

D=2

rD, jD,βD

〉

βD

+ εi j , (12)

where εi j denotes the approximation error.

123

F. Sandin et al

The approximation (12) is more efficient than (11) as a result of omitting the numerous
projections from state space to decoded weight-vectors in the estimation of the inner product.
Furthermore, the simulation experiments presented below show that the variance of the inner-
product approximation error increases when replacing the expectation value operations in
(12) by an explicit inner product in state space, but otherwise an explicit evaluation of the
inner product is possible in principle. This is expected because the averaging operations
reduce the influence of state-space noise, εᾱ in (6), on the approximate inner product. The
computational cost of the expectation values in (12) is low thanks to the sparsity of index
vectors, and the constant of proportionality depends on constant parameters only (N , LD
and χD). Note that the expressions resulting from a different choice of constant indices,
which represent the relationship to be compared, can be obtained by change of notation in
the equations presented above. For example, instead of summing over α1 = β1 in (12), it is
possible to sum over α2 = β2 and average over other indices in state space.

The generalised inner product approximation (12) and the encoding (3) and decoding (5)
methods are available in the software implementation of generalised RI [47]. Next we present
numerical results which demonstrate that the generalised methods that are introduced above
are reasonable.

3 Simulation experiments

We study the generalised RI method presented above with numerical experiments. Ideally,
analytical bounds should be derived for the error terms in (9) and the related approximation
(12). However, the analysis is complicated because of the sparse ternary index vectors and
the dependence on the structure of the data. Partial results are presented in “Appendix”,
which may be useful for further development. The simulation experiments are conducted
to verify that the proposed generalisation is feasible, and the results also demonstrate some
characteristics of the method.

The approximation errors introduced when encoding and decoding array elements depend
on some parameters, in particular the dimensionality of the array and the input data; the length
of the index vectors, LD; the number of nonzero trits in the index vectors, χD; the dimension
reduction, �DND : �DLD; and the characteristics of the data that is encoded.

3.1 Verification and comparison with PCA

The first experiment is carried out to verify that the generalised methodology presented in
Sect. 2 is feasible and furthermore to investigate how it compares to the well-known PCA
algorithm on a basic semantic analysis task. We consider a sparse 5000 × 5050 band matrix,
which is partially illustrated in the upper panel of Fig. 1.

The matrix has a diagonal band that is 50 elements wide. Therefore, nearby rows are similar
(semantically related) vectors with high inner products compared to the inner products of more
distant rows. A band matrix is used to simplify the graphical presentation and interpretation of
the structure of the data and the reconstruction. However, because of the random projections
involved in RI the particular structure of the data is not important. Similar RI results are
expected for other data structures of comparable sparsity.

The middle panel of Fig. 1 illustrates the reconstructed matrix when 101 principal com-
ponents are used, corresponding to a dimension reduction of about 25:1. This approximate
representation of the band matrix is similar to the original, but the band on the main diagonal
is more wide and additional band-like structures are visible. The PCA is performed with

123

Random indexing of multidimensional data

Fig. 1 Dimension reduction of a
5000 × 5050 band matrix (top)
and reconstruction with PCA
(middle) and two-dimensional RI
(bottom). The dimension
reduction is about 25:1 in both
cases, which is obtained using
101 principal components,
χD = 8 and LD = 964. In these
three panels, a 500 × 500 window
of the band matrix is displayed

Data (window)

100 200 300 400 500

100

200

300

400

500

PCA 25:1

100 200 300 400 500

100

200

300

400

500

2−way RI 25:1

100 200 300 400 500

100

200

300

400

500

MATLAB with double precision floating point numbers. The lower panel of Fig. 1 displays
the matrix reconstructed using two-dimensional RI, N = 2, for χD = 8 and LD = 964,
which also corresponds to a dimension reduction of about 25:1. The RI analysis is based
on signed 16-bit states, which in practice means that the RI representation of the matrix is
about four times smaller than the PCA representation. The RI approximation of the matrix
is similar to the original band matrix in the sense that the structure of the band is preserved,
but there are significant approximation errors also in this case, which appears like noise in
the figure.

The characteristics of the approximation errors introduced by PCA and RI are different.
The effect of the error term in (9) is evident in the lower panel of Fig. 1 in the form of noise,
which is an expected consequence of the random projections and distributional representation.
Therefore, it is interesting to investigate the effect of the approximation errors on the semantic
similarity of different rows. We calculate the average inner product between the 5000 different
rows versus the distance between the rows; see Fig. 2.

123

F. Sandin et al

Fig. 2 Average inner product of
rows versus the distance between
the rows of the original band
matrix (data), the
PCA-approximated matrix (PCA)
and the RI-approximated matrix
(two-way RI). The vertical axis is
normalised with the maximum
average inner product in all three
cases. Shaded areas denote ±1
standard deviation of the PCA-
and RI-approximated inner
products

0 50 100
Distance

-0.5

0

0.5

1

1.5

In
ne

r
pr

od
uc

t (
re

sc
al

ed
)

Data
PCA
2-way RI

In the case of PCA, the inner products are calculated from the full reconstructed band
matrix displayed in the middle panel of Fig. 1, and both the average and standard deviation
(shaded area) of the inner product are displayed in Fig. 2. The inner products approximated
with RI at a comparable dimension reduction are calculated with (12), which means that the
inner products are calculated directly in state space, without reference to the reconstruction
displayed in Fig. 1.

For comparison purposes, we calculate the inner products also from the reconstructed band
matrix displayed in the lower panel of Fig. 1 and find that the average inner products and
standard deviation are consistent with those displayed in Fig. 2. Furthermore, when omitting
the state-space averaging operations in (12) we find that the standard deviation increases by a
factor of more than two (data not shown), which confirms that the averaging operations reduce
the influence of noise. These results motivate the approximation presented in (12), which
reduces the computational cost and variance of RI-approximated inner products. These results
are also in line with previous results showing that random projection preserves similarities
of structures in the data [5,20].

The error introduced by the RI approximation has a significantly higher standard deviation
than the error introduced by PCA. However, PCA introduces a variable bias in the average
inner product, which is not observed in the RI results. When increasing the size and sparseness
of the band matrix, we find that the standard deviation of RI-approximated inner products
decreases and that the bias of the average inner product increases in the case of PCA (data
not shown).

3.2 Decoding error and comparison with ordinary RI

The approximation errors of generalised RI and ordinary RI of distributional vectors are
expected to be different because higher-order approximations involve additional random
projections, each contributing to the noise of the representation. Therefore, we compare
generalised and ordinary RI with simulation experiments. We consider an experiment where a
matrix is approximated using ordinary and generalised RI at different sparsity levels. Matrices
can be represented using ordinary, one-way RI if each column or row is treated as a vector,
which is the method used in natural language processing.

We select a generic approach where each column of the matrix represents a class, and
each row represents a possible feature of the classes. Therefore, the columns are feature
vectors that can be used to calculate the similarity of the classes, and the columns in state
space are distributional vectors that encode the similarity of the classes. This interpretation

123

Random indexing of multidimensional data

0 2 4 6 8 10
Number of features, ρ [%]

30

40

50

60

70

80

90

100
N

um
be

r o
f f

ea
tu

re
s r

et
rie

ve
d

[%
]

one-way RI
two-way RI

0 2 4 6 8 10
Number of features, ρ [%]

0

5

10

15

20

St
an

da
rd

 d
ev

ia
tio

n
[%

]

5,000 x 5,000
10,000 x 10,000
20,000 x 20,000

two-way

one-way

Fig. 3 Number of correctly decoded features approximated using one-way and two-way RI. The vertical
axis of the panel on the left-hand (right-hand) side represents the average (standard deviation) of the relative
number of correctly decoded features. In the case of the one-way (two-way) RI method, the higher standard
deviation corresponds to a 5000 × 5000 matrix encoded in 1250 × 5000 (2500 × 2500) states, whereas the
lower standard deviation corresponds to a 10000 × 10000 matrix encoded in 2500 × 10000 (5000 × 5000)
states. The results presented in the panel on the right-hand side also correspond to these dimensionalities, and
it includes an additional result for a 20000 × 20000 matrix that is approximated at a comparable dimension
reduction of 4:1. Note that the higher dimensionality of the index vectors in the 20000 × 20000 case results
in a lower standard deviation compared to the other two cases

and terminology is introduced to simplify the presentation. An integer sampled from the
flat distribution [0, 10] is added to each element of the matrix, which simulates noise in
the data that makes the matrix non-sparse. The non-sparse noise is introduced to make the
experiment more challenging, and the choice of distribution is arbitrary since we have no
particular application in mind. In addition to the noise, a relatively sparse set of high-value
weights, wi j = 100, are added to the matrix. The high-value weights simulate features of
the classes, which we want to distinguish from the noise.

The number of features is selected to be proportional to the size of the matrix, ND , and
we define the constant of proportionality as ρ. We vary the relative number of features, ρ,
from 0.1 to 10% of the size of the matrix, ND . The array elements are decoded with (5)
for each class, and the set of ρND array elements with the highest values are identified. If
not all elements representing encoded features of that class are identified in that set, some
features are not correctly identified after decoding. In the following we present the number
of features that are correctly identified. Unless stated otherwise, we use χD = 8 in the
simulation experiments.

We find that the average number of correctly decoded features is practically independent of
dimensionality, provided that the dimensionality is reasonably high (∼103 or higher because
the variance explodes at low dimensionality). However, the standard deviation of the number
of correctly decoded features decreases with increasing dimensionality. Therefore, if the
dimension reduction, �DND : �DLD , is kept constant and the number of encoded features
is proportional to the size of the matrix, the effect of increasing the size of the matrix, and
therefore the dimensionality of index vectors, is a reduction in the uncertainty of the number
of correctly decoded features. This scaling behaviour is illustrated numerically in Fig. 3.

The average of the relative number of correctly decoded features is practically independent
of the size of the matrix and the dimensionality of the index vectors, but the corresponding
standard deviation decreases with increasing dimensionality of the index vectors. Note that
the relative number of correctly decoded features first decreases with an increasing number
of encoded features, as expected, and that it increases slightly for �8% features in the case

123

F. Sandin et al

4:1 8:1 16:1 32:1 64:1
Dimension reduction

0

20

40

60

80

100
N

um
be

r o
f f

ea
tu

re
s r

et
rie

ve
d

[%
]

ρ = 0.5 %
ρ = 1 %
ρ = 2 %
ρ = 4 %one-way

two-way

4:1 8:1 16:1 32:1 64:1
Dimension reduction

10

100

SN
R

 =
 μ

 /
σ

ρ = 0.5 %
ρ = 1 %
ρ = 2 %
ρ = 4 %

one-way

two-way

Fig. 4 Effect of the dimension reduction, �DND : �DLD , on the relative number of correctly decoded
features. The panel on the left-hand side presents the average relative number of correctly decoded features.
The panel on the right-hand side shows the signal-to-noise ratio, which is defined as the average relative
number of correctly decoded features, μ, divided by the corresponding standard deviation, σ . The size of the
matrix, ND , is taken to be 64,000 × 64,000 for both the one-way and two-way RI method. At the maximum
dimension reduction of 64:1, the matrix is encoded in 1000×64,000 (8,000×8,000) states using the one-way
(two-way) RI method

of two-way RI. This effect is caused by the increasing probability of correctly identifying
features by chance when the relative number of features increases. In the case of the ordinary
one-way RI method, the standard deviation has a maximum at approximately 0.7–0.9%
features.

3.2.1 Effect of dimension reduction

Next we modify the experiment outlined in Sect. 3.2 and investigate how a varying dimension
reduction affects the possibility to correctly decode features of the classes. We vary the
dimension reduction, �DND : �DLD , from 4:1 to 64:1. The size of the matrix, ND , is kept
constant, which implies that the number of features that are encoded in the classes is constant.
The result of this simulation experiment is presented in Fig. 4. At increasing dimension
reduction ratio the approximation accuracy decreases more quickly for the ordinary one-way
RI method than the two-way generalisation. Therefore, the approximation error of two-way
RI approaches that of one-way RI at high-dimension reduction ratios.

3.2.2 Effect of sparseness of the index vectors

Next, we modify the experiment outlined in Sect. 3.2 and investigate how the feature-decoding
results presented in Fig. 3 depend on the number of nonzero trits, χD , in the index vectors. The
parameter χD governs the sparsity of the distributional representations, which affects both
the computational cost of the encoding algorithm and the approximation error. In the results
presented above we use χD = 8, which means that the index vectors have four positive
and four negative trits. Figure 5 illustrates how the average number of correctly decoded
features varies for different values of χD and the relative number of encoded features, ρ.
The choice χD = 8 is a good compromise because the accuracy increases insignificantly at
higher values of χD and the computational cost of the encoding and averaging operations is
proportional to �DχD . For example, the number of states associated with one matrix element
is χ1 × χ2 in the case of two-way RI, which implies that there is a quadratic dependence of

123

Random indexing of multidimensional data

0 2 4 6 8 10
Number of features, ρ [%]

40

50

60

70

80

90

100
N

um
be

r o
f f

ea
tu

re
s r

et
rie

ve
d

[%
]

χD=2
χD=4
χD=8
χD=20one-way RI

0 2 4 6 8 10
Number of features, ρ [%]

0

5

10

15

20

St
an

da
rd

 d
ev

ia
tio

n
[%

] χD=2
χD=4
χD=8
χD=20one-way RI

0 2 4 6 8 10
Number of features, ρ [%]

30

40

50

60

70

80

90

100

N
um

be
r o

f f
ea

tu
re

s r
et

rie
ve

d
[%

]

χD=2
χD=4
χD=8
χD=20two-way RI

0 2 4 6 8 10
Number of features, ρ [%]

0

5

10

15

20

25

30

St
an

da
rd

 d
ev

ia
tio

n
[%

]

χD=2
χD=4
χD=8
χD=20two-way RI

Fig. 5 Average number of correctly decoded features and the corresponding standard deviation for different
numbers of nonzero trits in the index vectors, χD , and different relative number of encoded features, ρ ∈
{0.1, 0.5, 1, 2, 4, 6, 8, 10}%. The matrix has a size of 5000 × 5000, and it is encoded using one-way
and two-way RI at a dimension reduction of 4:1. The results for χD = 8 are identical to those presented in
Fig. 3. The optimal choice for the sparseness of the index vectors is χD ∼ 8 because the accuracy increases
insignificantly for higher values, but the computational cost increases significantly for higher values of χD ;
see (4)

the computational cost on the number of nonzero trits in the index vectors, χD . This is the
motivation for using χD = 8 in the simulations presented above.

3.3 Natural language processing example

Next, we apply the generalised RI method to a basic natural language processing task. In statis-
tical models of natural language, it is common to construct a large co-occurrence matrix [52].
For example, this method is used in the Hyperspace Analogue to Language (HAL) [36,37]
and in Latent Semantic Analysis (LSA) [35], which are two pioneering models in the field.
In practical applications, the number of words can be hundreds of thousands. The number of
documents or contexts is also high, otherwise the statistical basis will be insufficient for the
analysis. Therefore, word co-occurrence matrices tend to be large objects. The simple exam-
ple considered below uses more than 5 billion matrix elements that represent word–context
relationships. Fortunately, co-occurrence matrices can be approximated to make the semantic
analysis less computationally costly. It was first demonstrated by Kanerva, Kristoferson and
Holst [31] that one-way RI can be used to effectively encode co-occurrence matrices for
semantic analysis; see Sahlgren [42,43] and [30] for further details and developments.

The definition of “context” is model specific, but it typically involves a set of neigh-
bouring words or one document. In HAL, the context is defined by a number of words that
immediately surround a given word, whereas in LSA, the context is defined as the document

123

F. Sandin et al

where the word exists. Linguistically, the former relation can be described as a paradigmatic
(semantic) relation, whereas the latter can be characterised as an associative (topical) relation.
In the traditional RI algorithm, each word type that appears in the data is associated with a
distributional vector, and each context is associated with a ternary index vector; see (1). If the
context is defined in terms of the neighbouring words of a given word, which is the method
that we use here, the distributional vectors are created by adding the index vectors (which can
be weighted differently) of the nearest preceding and succeeding words every time a word
occurs in the data [32]. If the context is defined as the document where the word exists, the
distributional vectors are created by adding the index vectors of all of the documents where
a word occurs, weighted with the frequency of the word in each document. In either case, a
distributional vector is the sum of the weighted index vectors of all contexts where that word
occurs.

The RI algorithm has been evaluated using various types of vocabulary tests, such as
the synonymy part of the “Test of English as a Foreign Language” (TOEFL) [31,43]. In the
following, we reconsider the synonym identification task presented by Kanerva, Kristoferson
and Holst [31] with three changes. First, we want to compare the one-way and two-way RI
methods. Therefore, we encode the co-occurrence matrix using both one-way and two-way
RI. Second, while Kanerva, Kristoferson and Holst [31] used the LSA definition of context,
we use a strategy similar to that in HAL and define the context as a window that spans ±2
words away from the word itself. This method implies that for each occurrence of a word,
there will be four additional word–word relationships encoded in the co-occurrence matrix.
This strategy avoids the potential difficulty of defining document boundaries in streaming
text, and it captures semantic relations between words rather than topical relations. The length
of the context window is a parameter that affects the quantitative results presented here, but it
is not essential for our qualitative discussion. The third difference compared with the study by
Kanerva, Kristoferson and Holst [31] is that we do not introduce cut-offs on term frequencies
to further improve the result. Words such as “the”, “at” and “be” have high frequencies that
render the occurrences of more interesting combinations less significant. We note that this
effect is stronger for the two-way RI method than for the one-way RI method. We include the
complete word–context spectrum, including the high-frequency relationships, and we present
results for two different transformations of the spectrum. In one case, we directly encode the
unaltered frequencies, and in the other case, we encode the square root of the frequencies.
The square root decreases the relative significance of high frequencies, which improves the
result and illustrates the importance of the definition of the weight in the feature extraction
method.

We construct the co-occurrence matrix from 37,620 short high-school level articles in the
TASA (Touchstone Applied Science Associates, Inc.) corpus. The text has been morpholog-
ically normalised so that each word appears in its base form [32]. The text contains 74,183
word types that are encoded in a co-occurrence matrix with one-way and two-way RI. In the
case of one-way RI, we use index vectors of length 1000, so that the dimension reduction is
74,183 × 74,183 : 1000 × 74,183 → 74 : 1. In the case of two-way RI, we use a state
array of size 1000 × 74,183, thereby maintaining the same dimension reduction ratio. We
repeat the two-way RI calculations using a square state array of size 8612 × 8612. There are
numerous misspellings (low-frequency words) in the corpus, and the most frequent word is
“the”, which occurs nearly 740,000 times. At the second place is “be” with just over 420,000
occurrences. Therefore, we define 32-bit states in the implementation of RI.

The task consists of eighty TOEFL synonym tests, which contains five words each. One
example of a synonym test considered here is presented in Table 2. One out of the five words
in each synonym test is given, and the task is to identify the synonym of that word among the

123

Random indexing of multidimensional data

Table 2 Example of a TOEFL synonym test

Word Number of occurrences

Essential (given) 855

Basic 1920

Ordinary 837

Eager 480

Possible 3348

The first word is given, and the task is to determine which of the four remaining words that is a synonym of
that word. The number of occurrences of each word in the TASA (Touchstone Applied Science Associates,
Inc.) corpus is also illustrated

other four words. There is only one correct synonym in each case, and consequently three
incorrect alternatives.

The task to identify the correct synonym is addressed using the RI-encoded co-occurrence
matrices, and the vector semantic comparison method described in Sect. 2.4. We consider 80
synonym tests, each comprising five words. Using ordinary RI, 38 out of the 80 synonym tests
are solved correctly, meaning that the cosine of angle between the given word and correct
synonym is maximum. Repeating the experiment with the square root of frequencies and
ordinary RI, 43 out of the 80 synonym tests are solved correctly. Using two-way RI and a
square state array of size 8612 × 8612 only 24 out of 80 synonym tests are solved correctly.
Repeating the experiment with the square root of frequencies and two-way RI we obtain
a similar result, 24 out of the 80 synonym tests are solved correctly. However, repeating
the two-way RI experiment with the square root of frequencies and a state array of size
1000 × 74,183 we obtain 34 correct results out of 80.

These results can be further improved using other preprocessing methods, for example, by
introducing weighted context windows and cut-offs on the encoded relationship frequencies
[32], or by defining the weights as the logarithm of frequencies divided by the conditional
entropy of the context given the word [35]. Furthermore, in order to enable numerical simu-
lations on a standard PC we only consider higher-order RI of one distributed representation,
while there is one distributed representation for each class/term in the case of one-way RI.
This limitation can be avoided in large-scale applications of RI at data centres, possibly
leading to more favourable results. One benefit of the two-way RI method is that words can
be defined on the fly with a minimum impact on the storage space needed. This property is
interesting for the analysis of streaming data, where many occasional features may exist in
the data that are not relevant for the long-term analysis.

4 Conclusions

Random indexing is a form of random projection with particularly low computational com-
plexity, thanks to the high sparsity of the index vectors and the straightforward distributed
coding of information. RI has numerous applications and has proven useful for solving chal-
lenging problems without introducing much complexity.

Here we generalise ordinary RI (1) of distributional vectors [31,42] to RI of distributional
arrays of arbitrary order, and we present results of simulation experiments with one- and two-
way RI. The software implementation [47] of the key equations (3), (5) and (12) supports

123

F. Sandin et al

N -way RI. Ordinary RI is used in numerous applications in natural language processing,
where the possibility to approximate data in a compressed representation that can be updated
incrementally at low computational cost and complexity in an online manner is useful. Fur-
thermore, the compressed data structure can be used for semantic analysis by approximating
inner products of distributional arrays at low computational cost using (12), without prior
decoding of data. These properties make RI interesting for the analysis of streaming data,
in particular when explicit storage of data is infeasible. Incremental processing of streaming
data is not explicitly investigated in the simulation experiments presented in this work, but the
data sets considered are encoded in an incremental fashion, one item after the other. The low
computational complexity and incremental character of the encoding algorithm (3) make
applications to streaming data straightforward. Furthermore, the possibility to extend the
length of the random indices and therefore dynamically extend the number of properties that
can be compressed in the state array makes RI interesting for analysis of streaming data. The
generalisation of RI from distributional vectors to distributional arrays opens up for analysis
of higher-order relationships, for example context- or time-dependent associations of terms
in streaming text (third order), or the context- and time-dependent associations between terms
(fourth order).

Our simulation results confirm the expectation that the approximation error is lower for
ordinary one-way RI compared to two-way RI at constant size of the distributed representa-
tion. This is expected because each random index of an array is associated with additional
random projections, which adds to the state-space noise. The benefit of two-way RI is that
multiple classes of features can be encoded in a distributed representation of constant size
and that new features can be defined on the fly with low impact on the storage space required.
This property is interesting for the analysis of higher-order relationships between features
derived from streaming data, where the number of potential features and relationships can
be astronomical.

Higher-order RI can be applied to multiple distributional arrays, just like ordinary RI
(1) typically is applied to a set of distributional vectors, si . For example, in ordinary RI of
co-occurrence matrices each column of the co-occurrence matrix is represented in a distribu-
tional vector, and each row of the co-occurrence matrix refers to an index vector that defines a
random projection on the distributional vectors. This way the effect of state-space noise on the
accuracy of term representations is minimised because each term is associated with a unique
distributional vector. However, in this case the size of the distributed representation is propor-
tional to the number of terms, which limits the scalability of the approach. Depending on the
application requirements this principle can also be applied to higher-order RI when balancing
between reasonable approximation errors, data storage demands and computational cost.

From a technical point of view we note that RI requires index vectors of high dimensional-
ity (typically n > 103), otherwise the variance related to the approximate random projections
explodes and renders the approach practically useless. This tendency is well described by
Kanerva [30] in his paper about computation in “hyperdimensional” spaces, and we have
observed a similar effect in earlier work on distributional models based on high-dimensional
random projections [15,16]. For high-dimensional representations we find that the variances
of approximated inner products and decoded weights decrease with increasing dimension-
ality and that the expectation values are practically invariant with respect to dimensionality.
Furthermore, we find that the number of nonzero trits in the index vectors, χD , has an effect
on the accuracy of RI. The accuracy increases notably when increasing χD from two to four,
but not much beyond χD = 8. Therefore, our simulation experiments suggest that χD = 8
is the preferred choice for this hyperparameter since the computational cost of the encoding
and semantic analysis algorithms increase with χD .

123

Random indexing of multidimensional data

In summary, RI is an incremental dimension reduction method that is computationally
lightweight and well suited for online processing of streaming data not feasible to analyse
with other, more accurate and complex methods [50]. For example, standard co-occurrence
matrices in natural language processing applications can be extended with temporal informa-
tion [26], linguistic relations [3,53] and structural information in distributed representations
[9,59]. There have been few attempts at extending traditional matrix-based natural language
processing methods to higher-order arrays due to the high computational cost involved. This
is something that multidimensional RI is likely to facilitate.

Acknowledgements The TASA and TOEFL items have been kindly provided by Professor Thomas Landauer,
University of Colorado. We thank Pentti Kanerva for comments on an early draft of the manuscript [48] and
anonymous referees for useful comments and suggestions that helped us improve the clarity of the manuscript.
The possibility to extend RI to two dimensions is mentioned in [30] at p. 153. This work is partially funded
by the Kempe Foundations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Indifference property of high-dimensional ternary vectors

The tendency of random vectors in high-dimensional spaces to be indifferent, meaning that
by chance they are unrelated (“nearly orthogonal”), is well known in the context of binary
vectors [29,30]. Here we generalise that concept to ternary vectors {−1, 0, 1}n , which are
required for RI. These results were obtained in an attempt to derive bounds for the decoding
error in (9) and are presented here for future use.

Consider the binary space {0, 1}n of vectors with length n, which have equal probability
for the 0 and 1 states in each element. The distance, d , between two binary vectors can be
defined as the number of nonzero bits in the bit-wise exclusive or (XOR) of the vectors. This
distance is equivalent to the square of the Euclidean distance and it corresponds to the number
of bits that are different in the two vectors, which is known as the Hamming distance. The
number of vectors in the space that are at a distance d from a specific vector is given by the
binomial coefficient

C(n, d) =
(
n

d

)
,

because this is the number of different ways to choose (flip) d bits out of n. Therefore,
the number of vectors at a certain distance from a reference vector follows the binomial
distribution with a probability of p = 1/2, which has a mean of n/2 and a variance of n/4.

At high values of n the binomial distribution can be approximated using a normal distrib-
ution. If a distribution is approximately normal, the proportion within z standard deviations
of the mean is erf(z/

√
2). This relationship implies that the distance distribution is highly

concentrated around the mean because the error function quickly approaches unity with
increasing z. For example, 99.7% of the distances are within three standard deviations from
the mean distance. Only one billionth (10−9) of the distances deviate more than six standard
deviations from the mean. The mean distance is n/2, and the standard deviation of the dis-
tance is

√
n/2. This implies that the mean distance is

√
n standard deviations; for example,

the mean distance is 31.6 standard deviations when n = 1000. A striking consequence of
this distribution of distances is that practically all of the vectors in a high-dimensional binary
space are located at distances that are approximately n/2 from any specific vector in the space.

123

http://creativecommons.org/licenses/by/4.0/

F. Sandin et al

In this work, we are interested in ternary vectors. Instead of bits that have two possi-
ble states, {0, 1}, we consider balanced trits that have three possible states {−1, 0, 1}. The
introduction of a third state that has negative sign is crucial because it enables the sparse
distributed coding of array elements in the states. This discussion concerns sparse ternary
vectors of length n with k positive (1) and k negative (−1) trits, where k
 n/2. Note that
the index k in Sect. 2 is different from the symbol k defined here. The ternary space can be
visualised as a subset of an inner product space where orthogonality is defined by a vanish-
ing dot product between two vectors. With this definition of orthogonality it follows that an
n-dimensional ternary space has at most n mutually orthogonal vectors. However, in a high-
dimensional space, there are many more vectors that are indifferent. This result is analogous
to the high probability of indifference between vectors in high-dimensional binary space. The
total number, N , of ternary vectors of length n that has k positive and k negative elements is

N =
(
n

2k

)(
2k

k

)
=

(
n

k

)(
n − k

k

)
, (13)

because there are C(n, 2k) different ways to choose 2k nonzero trits and C(2k, k) different
ways to distribute the signs to the nonzero trits. The alternative (second) definition above
can be interpreted in a similar way; there are C(n, k) different ways to choose the positive
trits and C(n − k, k) ways to choose the negative trits or vice versa. How many of these N
vectors are indifferent? The number of vectors that have an absolute value of the dot product,
d = |〈·, ·〉|, with respect to any reference vector is (see proof below)

N (n, k, d)
(
n − 2k

2k − d

)(
2k − d

k

)(
k

k − d

)

× 3F2(−d,−k,−k; 1 + k − d, 1 + k − d; − 1), d ≤ k, n � k, (14)

where 3F2 is a generalised hypergeometric function [40]. In the analysis leading to this
expression we assume that 0 ≤ d ≤ k because we are only interested in indifferent vectors,
and we assume that the vectors are sparse so that n � k. If we divide the number of vectors,
N (n, k, d), which has a specific value of d with respect to any reference vector, by the total
number of vectors in the space, N , the result is the relative size of the space as a function
of d . The relative size of the space is equivalent to the probability of randomly choosing a
vector from the space that has a dot product of ±d with respect to a reference vector

P(n, k; 〈·, ·〉 = ±d) N−1N (n, k, d), d ≤ k, n � k. (15)

This result describes the probability for the randomly chosen vectors to be indifferent. The
numbers N and N (n, k, d) are extremely large (n is a high number). Therefore, for practical
purposes, we make a series expansion of factors involving n in the limit n → ∞. The result is

P(n, k; 〈·, ·〉 = ±d) T

nd

d∑

i=0

(k!)4

[(k − d + i)!]2 [(k − i)!]2 (d − i)! i ! , (16)

T = 1 − 8k2 + d2 + d − 8kd

2n

+ 1

n2

[
2(1 − 2k)2k2 + d4

8
+

(
5

12
− 2k

)
d3 +

(
10k2 − 4k + 3

8

)
d2

+
(

−16k3 + 10k2 − 2k + 1

12

)
d

]
+ O(n−3), (17)

123

Random indexing of multidimensional data

0 10% 20% 30% 40% 50%

Inner product |〈⋅,⋅〉|

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100
Pr

ob
ab

ili
ty

 P
(〈

⋅,⋅
〉)

k/2 k4/k34/k

k=4

n = 104

k=6

k=8

k=10

k=12

k=14k=16

0 10% 20% 30% 40% 50%

Inner product |〈⋅,⋅〉|

10-60

10-50

10-40

10-30

10-20

10-10

100

Pr
ob

ab
ili

ty
 P

(〈
⋅,⋅

〉)

0 2 4 6 8 10

n=103

k = 10

n=104

n=105

n=106

n=107

n=108

Fig. 6 Indifference property of high-dimensional ternary vectors {−1, 0, 1}n . The panel on the left-hand side
shows the probability (15) for inner products of sparse ternary vectors with length n = 104 and different
numbers of nonzero trits, 2k. The panel on the right-hand side shows the probability (15) for k = 10 and
different lengths of the ternary vectors, n. In both cases the horizontal scale is normalised to the maximum
value of the inner product, which is 2k. Probabilities for absolute values of 〈·, ·〉 greater than 50% of the
maximum are excluded, because (16) is valid only for d ≤ k. For n = 104 and k = 4, which are the ternary
vectors with a length of ten thousand elements with four positive and four negative trits, the probability that
a randomly generated vector has an inner product of four with respect to a reference vector is approximately
10−12. The probability of an inner product of minus four is also approximately 10−12. Similarly, for n = 104

and k = 12 the probability of 50% overlap (〈·, ·〉 = ±12) is approximately 10−30

where the terms in T originate from the series expansion. The assumptions d ≤ k and n � k
are to be respected in applications of this result, which has not been presented elsewhere as
far as we know.

The following example illustrates the indifference property of high-dimensional ternary
vectors. Let n = 104 and k = 10, which are typical parameters used [30,31]. It follows
from (15) that 96% of the space is orthogonal with respect to any reference vector, and less
than 4% of the space has a dot product of +1 or −1 (see Table 3). Only 7 × 10−9 of the
space has a dot product with a magnitude greater than or equal to four, which corresponds to
approximately 20% nonzero trits in common. With 25% common trits (d = 5 and k = 10),
the relative size of the space is 2 × 10−11. Therefore, most of the space is approximately
orthogonal to any particular vector in the space. Analogously, the dot products of vectors that
are randomly sampled from the space are given by the probability (15). The probabilities for
n = 104 and some different values of k are illustrated in Fig. 6.

Proof

Here we derive the relation used in (14). The total number, N , of ternary vectors of length n
that has k positive and k negative trits is

N =
(
n

2k

)(
2k

k

)
, (18)

because there are C(n, 2k) different ways to choose 2k nonzero trits and C(2k, k) different
ways to distribute the signs to the nonzero trits. How many of these N vectors have a dot
product that is nearly zero; i.e. how many of them are indifferent? Let d = |〈·, ·〉| be the
absolute value of the dot product between two vectors. For simplicity we restrict the analysis
to 0 ≤ d ≤ k, because we are interested in indifferent vectors only. This restriction does not
affect the accuracy of the result. We assume also that the vectors are sparse so that n � k.
Imagine a fixed reference vector that is picked at random from the space of N vectors. This
reference vector has k positive trits, k negative trits and n − 2k trits that are zero. The large

123

F. Sandin et al

Table 3 Indifference of vectors in the high-dimensional space {−1, 0, 1}n

2k 〈·, ·〉 n = 102 n = 103 n = 104

Psim P Psim P Psim P

4 0 8.5e−1 8.47e−1 9.8e−1 9.84e−1 ∼1.0 9.98e−1

±1 7.3e−2 7.29e−2 7.9e−3 7.93e−3 8.0e−4 7.99e−4

±2 2.0e−3 1.94e−3 2.0e−5 1.99e−5 2.0e−7 2.00e−7

8 0 5.5e−1 *5.17e−1 9.4e−1 9.38e−1 9.9e−1 9.94e−1

±1 1.9e−1 1.90e−1 3.0e−2 3.05e−2 3.2e−3 3.20e−3

±2 2.8e−2 2.74e−2 3.9e−4 3.86e−4 4.0e−6 3.99e−6

±3 2.0e−3 1.96e−3 2.4e−6 2.44e−6 2.5e−9 2.49e−9

±4 7.4e−5 7.42e−5 8.2e−9 8.22e−9 <10−10 8.3e−13

12 0 3.5e−1 – 8.7e−1 8.65e−1 9.9e−1 9.86e−1

±1 2.3e−1 – 6.4e−2 6.37e−2 7.1e−3 7.10e−3

±2 7.9e−2 – 2.0e−3 1.99e−3 2.2e−5 2.17e−5

±3 1.6e−2 – 3.4e−5 3.44e−5 3.7e−8 3.69e−8

±4 2.0e−3 – 3.6e−7 3.64e−7 <10−10 3.8e−11

16 0 2.5e−1 – 7.8e−1 *7.73e−1 9.7e−1 9.75e−1

±1 2.0e−1 – 1.0e−1 1.02e−1 1.3e−2 1.25e−2

±2 1.1e−1 – 5.9e−3 5.94e−3 7.1e−5 7.09e−5

±3 4.3e−2 – 2.0e−4 2.01e−4 2.3e−7 2.34e−7

±4 1.1e−2 – 4.4e−6 4.44e−6 4.9e−10 5.0e−10

20 0 2.0e−1 – 6.9e−1 *6.72e−1 9.6e−1 9.61e−1

±1 1.8e−1 – 1.4e−1 1.39e−1 1.9e−2 1.93e−2

±2 1.2e−1 – 1.3e−2 1.31e−2 1.8e−4 1.75e−4

±3 6.5e−2 – 7.4e−4 7.36e−4 9.6e−7 9.55e−7

±4 2.7e−2 – 2.8e−5 2.78e−5 3.5e−9 3.49e−9

Tabulated here is the probability, P , in (16) for different values of the vector length, n, and number of nonzero
elements, 2k. These probabilities are to be compared with the corresponding probabilities obtained from
explicit numerical simulations, Psim . Entries marked with an asterisk demonstrate the effect of neglecting
contributions to the inner product arising from higher-order trit combinations (like 〈·, ·〉 = · · · + 1 × 1 · · · −
1 × 1 · · · + 1 × 1 · · · = 1) in the analysis leading to (16). The series expansion is marginally applicable in the
case n = 102 for low values of k, and n � k is violated for high k

majority of vectors with 〈·, ·〉 = ±d with respect to this reference vector will have d trits that
coincides with the 2k nonzero trits of the reference vector, and the remaining 2k−d nonzero
trits will be distributed among the n − 2k trits that are zero in the reference vector. There are
additional vectors with the same value of d , because cancellations of type 1+1−1 = 1 result
from higher-order coincidences. The relative number of such vectors is insignificant, and we
therefore neglect them here. This simplification is justified with a numerical calculation that
is presented below. The selection of 2k − d nonzero trits out of n − 2k gives a factor of
C(n − 2k, 2k − d). Then remains the question how many possibilities there are to select
those 2k − d nonzero trits from the 2k nonzero trits in the reference vector, and how many
combinations that arise because of signs. These questions are not independent, because the
number of ways to choose 2k − d trits from 2k trits depends on the number of +1 trits that
are chosen, and the relative number of +1 trits that are chosen will affect also the number of
possible permutations. Accounting for these constraints the number of vectors is

123

Random indexing of multidimensional data

N (n, k, d)
(
n − 2k

2k − d

) k∑

n+=k−d

(
k

n+

)(
k

2k − d − n+

)(
2k − d

n+

)
, d ≤ k, n � k,

(19)

where n+ denotes the number of positive trits that are chosen from the 2k nonzero trits in
the reference vector. The number of negative trits chosen is n− = 2k − d − n+. The sum
in (19) arises because there are multiple choices for the number of positive trits to choose
from the reference vector. At most k positive trits can be chosen, i.e. all positive trits. The
lower limit of n+ = k−d corresponds to the maximum value for the number of negative trits
chosen, n− = k. The first factor in the sum, C(k, n+), accounts for the number of ways to
choose n+ positive trits from the k positive trits in the reference vector. Similarly, the second
factor accounts for the number of ways to choose n− negative trits from the k negative trits
in the reference vector. The last factor accounts for sign permutations when distributing the
chosen trits to the 2k − d nonzero trits that are selected by the prefactor. If we divide the
number of vectors, N (n, k, d), that have a specific value of d with respect to any reference
vector, with the total number of vectors in the space, N , the result is the relative size of the
space as a function of d . The relative size of the space is equivalent to the probability of
randomly choosing a vector from the space that has a dot product of ±d with respect to the
reference vector. Since the number of positive and negative signs are fixed, the combinatorial
problem solved here has a hypergeometric character. The sum in (19) can be replaced with
a generalised hypergeometric function. The result of that substitution is presented in (15).

Numerical results for the dot product between a reference vector and 1012 randomly
chosen ternary vectors are presented in Table 3.

These numerical results confirm the analytical result. Observe, however, that the accuracy
of the analytical result is poor for low values of n and high values of k, as indicated in the
table. This is connected to the assumption that n � k in the analysis above.

References

1. Achlioptas D (2003) Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J
Comput Syst Sci 66(4):671–687

2. Baraniuk RG (2011) More is less: signal processing and the data deluge. Science 331(6018):717–719
3. Baroni M, Lenci A (2010) Distributional memory: a general framework for corpus-based semantics.

Comput Linguist 36(4):673–721
4. Berry M, Mezher D, Sameh A, Philippe B (2003) Parallel computation of the singular value decomposition.

In: Kontoghiorghes EJ (ed) Handbook on parallel computing and statistics. Chapman and Hall/CRC, Boca
Raton, pp 117–164

5. Bingham E, Mannila H (2001) Random projection in dimensionality reduction: applications to image and
text data. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery
and data mining, KDD ’01, ACM, pp 245–250

6. Boyd MWM (2010) Randomized algorithms for matrices and data. Found Trends Mach Learn 3(2):123–
224

7. Broder AZ (1997) On the resemblance and containment of documents. In: Compression and complexity
of sequences (SEQUENCES’97), IEEE Computer Society, pp 21–29

8. Bullinaria J, Levy J (2012) Extracting semantic representations from word co-occurrence statistics: stop-
lists, stemming, and SVD. Behav Res Methods 44(3):890–907. doi:10.3758/s13428-011-0183-8

9. Clark S, Pulman S (2007) Combining symbolic and distributional models of meaning. In: Proceedings of
the AAAI spring symposium on quantum interaction, pp 52–55

10. Cohen T (2008) Exploring MEDLINE space with random indexing and pathfinder networks. AMIA Ann
Symp Proc 2008:126–130

11. Cohen T, Widdows D (2009) Empirical distributional semantics: methods and biomedical applications. J
Biomed Inform 42(2):390–405

123

http://dx.doi.org/10.3758/s13428-011-0183-8

F. Sandin et al

12. Damljanovic D, Petrak J, Cunningham H (2010) Random indexing for searching large rdf graphs. In: The
proceedings of the 7th extended semantic web conference (ESWC 2010), Springer Verlag, Heraklion,
Greece

13. Dasgupta S, Gupta A (2003) An elementary proof of a theorem of Johnson and Lindenstrauss. Random
Struct Algorithms 22(1):60–65

14. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41(6):391–407

15. Emruli B, Gayler R, Sandin F (2013) Analogical mapping and inference with binary spatter codes and
sparse distributed memory. In: The 2013 international joint conference on neural networks (IJCNN), pp
1–8

16. Emruli B, Sandin F (2014) Analogical mapping with sparse distributed memory: a simple model that
learns to generalize from examples. Cogn Comput 6(1):74–88

17. Fradkin D, Madigan D (2003) Experiments with random projections for machine learning. In: Proceedings
of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03,
ACM, pp 517–522

18. Frankl P, Maehara H (1988) The Johnson–Lindenstrauss lemma and the sphericity of some graphs. J
Comb Theory Ser B 44(3):355–362

19. Fronza I, Sillitti A, Succi G, Terho M, Vlasenko J (2013) Failure prediction based on log files using
random indexing and support vector machines. J Syst Softw 86(1):2–11

20. Goel N, Bebis G, Nefian A (2005) Face recognition experiments with random projection. Biom Technol
Human Identif II 5779:426–437

21. Gorman J, Curran JR (2006) Scaling distributional similarity to large corpora. In: Proceedings of the 21st
international conference on computational linguistics and the 44th annual meeting of the association for
computational linguistics, pp 361–368

22. Halko N, Martinsson PG, Tropp JA (2011) Finding structure with randomness: probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev 53(2):217–288

23. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, second edition: data mining,
inference, and prediction, Springer Series in Statistics, 2nd ed. 2009. Springer, New york

24. Henriksson A, Hassel M, Kvist M (2011) Diagnosis code assignment support using random indexing of
patient records—a qualitative feasibility study. In: Peleg M, Lavrač N, Combi C (eds) Artificial intelligence
in medicine, number 6747 in lecture notes in computer science. Springer, Berlin Heidelberg, pp 348–352

25. Johnson W, Lindenstrauss J (1984) Extensions of Lipschitz maps into a Hilbert space. Contemp Math
26:189–206

26. Jurgens D, Stevens K (2009) Event detection in blogs using temporal random indexing. In: Proceedings
of the workshop on events in emerging text types, eETTs ’09, Association for Computational Linguistics,
Morristown, NJ, USA, pp 9–16

27. Jurgens D, Stevens K (2010) The s-space package: an open source package for word space models. In:
Proceedings of the ACL 2010 system demonstrations, ACLDemos ’10, Association for Computational
Linguistics, Morristown, NJ, USA, pp 30–35

28. Kane DM, Nelson J (2014) Sparser Johnson–Lindenstrauss transforms. J ACM 61(1):4–23
29. Kanerva P (1988) Sparse distributed memory. MIT Press, Cambridge
30. Kanerva P (2009) Hyperdimensional computing: an introduction to computing in distributed representa-

tion with High-Dimensional random vectors. Cogn Computation 1(2):139–159
31. Kanerva P, Kristoferson J, Holst A (2000) Random indexing of text samples for latent semantic analysis.

In: Proceedings of the 22nd annual conference of the cognitive science society, p 1036
32. Karlgren J, Sahlgren M (2001) From words to understanding. Foundations of real-world intelligence.

CSLI Publications, Stanford
33. Kaski S (1998) Dimensionality reduction by random mapping: fast similarity computation for clustering.

In: The 1998 IEEE international joint conference on neural networks proceedings, 1998. IEEE world
congress on computational intelligence, vol 1, pp 413–418

34. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500
35. Landauer TK, Dumais ST (1997) A solution to plato’s problem: the latent semantic analysis theory of

acquisition, induction, and representation of knowledge. Psychol Rev 104(2):211–240
36. Lund K, Burgess C (1996) Producing high-dimensional semantic spaces from lexical co-occurrence. Beh

Res Methods 28(2):203–208
37. Lund K, Burgess C, Atchley RA (1995) Semantic and associative priming in a high-dimensional semantic

space. In: Cognitive science proceedings, pp 660–665
38. Matoušek J (2008) On variants of the Johnson–Lindenstrauss lemma. Random Struct Algorithms

33(2):142–156

123

Random indexing of multidimensional data

39. Mitliagkas I, Caramanis C, Jain P (2013) Memory limited, streaming pca. In: Burges CJC, Bottou L,
Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in neural information processing systems,
vol 26. Curran Associates, Inc., pp 2886–2894

40. Olver FW, Lozier DW, Boisvert RF, Clark CW (2010) NIST handbook of mathematical functions. Cam-
bridge University Press, New York, NY, USA. See also the NIST digital library of mathematical functions
http://dlmf.nist.gov

41. Papadimitriou CH, Tamaki H, Raghavan P, Vempala S (1998) Latent semantic indexing: a probabilistic
analysis. In: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on principles
of database systems, PODS ’98, ACM, pp 159–168

42. Sahlgren M (2005) An introduction to random indexing. In: Methods and applications of semantic indexing
workshop at the 7th international conference on terminology and knowledge engineering

43. Sahlgren M (2006) The word-space model: using distributional analysis to represent syntagmatic and
paradigmatic relations between words in high-dimensional vector spaces, doctoral thesis, Stockholm
University

44. Sahlgren M (2008) The distributional hypothesis. Ital J Linguist 20(1):33–54
45. Sahlgren M, Holst A, Kanerva P (2008) Permutations as a means to encode order in word space. In:

Proceedings of the 30th annual meeting of the cognitive science society
46. Sahlgren M, Karlgren J (2009) Terminology mining in social media. In: Proceedings of the 18th ACM

conference on information and knowledge management, CIKM ’09, ACM, New York, NY, USA, pp 405–
414

47. Sandin F (2016) N-way random indexing implementation. doi:10.5281/zenodo.53766
48. Sandin F, Emruli B, Sahlgren M (2011) Incremental dimension reduction of tensors with random index,

CoRR arXiv:1103.3585
49. Staff Science (2011) Challenges and opportunities. Science 331(6018):692–693
50. Sun J, Tao D, Papadimitriou S, Yu PS, Faloutsos C (2008) Incremental tensor analysis: Theory and

applications. ACM Trans Knowl Discov Data 2(3):11. doi:10.1145/1409620.1409621
51. Turney PD (2002) Thumbs up or thumbs down?: semantic orientation applied to unsupervised classifica-

tion of reviews. In: Proceedings of the 40th annual meeting on Association for Computational Linguistics,
ACL ’02, Association for Computational Linguistics, Stroudsburg, PA, USA, pp 417–424

52. Turney PD, Pantel P (2010) From frequency to meaning : vector space models of semantics. J Artif Intell
Res 37:141–188

53. Van de Cruys T (2009) A non-negative tensor factorization model for selectional preference induction.
In: Proceedings of the workshop on geometrical models of natural language semantics, Association for
Computational Linguistics, Athens, Greece, pp 83–90

54. Vasuki V, Cohen T (2010) Reflective random indexing for semi-automatic indexing of the biomedical
literature. J Biomed Inform 43(5):694–700

55. Velldal E (2011) Predicting speculation: a simple disambiguation approach to hedge detection in biomed-
ical literature. J Biomed Semant 2(S–5):S7

56. Vempala SS (2004) The random projection method. American Mathematical Society, Providence
57. Wan M, Jönsson A, Wang C, Li L, Yang Y (2012) Web user clustering and web prefetching using random

indexing with weight functions. Knowl Inf Syst 33(1):89–115
58. Widdows D, Ferraro K (2008) Semantic vectors: a scalable open source package and online technology

management application. In: Proceedings of the sixth international language resources and evaluation
(LREC’08), European Language Resources Association (ELRA), Marrakech, Morocco

59. Yeung H, Tsang P (2004) Distributed representation of syntactic structure by tensor product representation
and non-linear compression. In: Proceedings of the 19th national conference on artificial intelligence,
AAAI’04, AAAI Press, pp 437–442

123

http://dlmf.nist.gov
http://dx.doi.org/10.5281/zenodo.53766
http://arxiv.org/abs/1103.3585
http://dx.doi.org/10.1145/1409620.1409621

F. Sandin et al

Fredrik Sandin is an associate professor in industrial electronics
at LTU. He holds an M.Sc. in Engineering Physics and a Ph.D. in
Physics. He received a “New-Talents Award” (2004) from the Inter-
national School of Subnuclear Physics in Erice for “An original work
in theoretical physics”; two post-doctoral scholarships in theoretical
physics (2008–2009) and brain-inspired computing (2010–2011); and
the Gunnar Öquist Fellowship (2014) from the Kempe Foundations.
His research focuses on cognitive computing and neuromorphic engi-
neering.

Blerim Emruli is a senior researcher at SICS, where his work focuses
on machine learning and its application to solve real-world industrial
problems. He received his M.Sc. degree (2009) with focus in artificial
intelligence from Dalarna University, Sweden, and the Ph.D. degree
(2014) with focus in cognitive computing from Luleå University of
Technology, Sweden. His Ph.D. thesis “Ubiquitous Cognitive Comput-
ing: A Vector Symbolic Approach” extends the previous studies on
computational models of cognition and meaning using vector-based
representations

Magnus Sahlgren is a senior researcher at SICS and co-founder of
Gavagai. He holds a Ph.D. in computational linguistics from Stockholm
University and has worked on computational models of meaning since
2000. Sahlgren’s dissertation “The Word-Space Model” was awarded
the prize for the most prominent scholarly achievement of 2006 at the
Stockholm University Faculty of Humanities. His current research is
situated at the intersection between computational linguistics, machine
learning and artificial intelligence.

123

	Random indexing of multidimensional data
	Abstract
	1 Introduction
	2 Method
	2.1 Random indexing
	2.2 Encoding algorithm
	2.3 Decoding algorithm
	2.4 Generalised vector semantic analysis

	3 Simulation experiments
	3.1 Verification and comparison with PCA
	3.2 Decoding error and comparison with ordinary RI
	3.2.1 Effect of dimension reduction
	3.2.2 Effect of sparseness of the index vectors

	3.3 Natural language processing example

	4 Conclusions
	Acknowledgements
	Appendix: Indifference property of high-dimensional ternary vectors
	Appendix: Indifference property of high-dimensional ternary vectors
	Proof

	References

