269 research outputs found

    Vegetation's Red Edge: A Possible Spectroscopic Biosignature of Extraterrestrial Plants

    Full text link
    Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge", as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.Comment: 19 pages, 6 figures, to appear in Astrobiolog

    Nonperturbative Effects from the Resummation of Perturbation Theory

    Get PDF
    Using the general argument in Borel resummation of perturbation theory that links the divergent perturbation theory to the nonperturbative effect we argue that the nonperturbative effect associated with the perturbation theory should have a branch cut only along the positive real axis in the complex coupling plane. The component in the weak coupling expansion of the nonperturbative amplitude, which usually includes the leading term in the weak coupling expansion, that gives rise to the branch cut can be calculated in principle from the perturbation theory combined with some exactly calculable properties of the nonperturbative effect. The realization of this mechanism is demonstrated in the double well potential and the two-dimensional O(N) nonlinear sigma model. In these models the leading term in weak coupling of the nonperturbative effect can be obtained with good accuracy from the first terms of the perturbation theory. Applying this mechanism to the infrared renormalon induced nonperturbative effect in QCD, we suggest some of the QCD condensate effects can be calculated in principle from the perturbation theory.Comment: 21 Pages, 1 Figure; To appear in Phys Rev

    Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination

    Get PDF
    Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape

    Intratumoral heterogeneity of second-harmonic generation scattering from tumor collagen and its effects on metastatic risk prediction

    Get PDF
    Background: Metastases are the leading cause of breast cancer-related deaths. The tumor microenvironment impacts cancer progression and metastatic ability. Fibrillar collagen, a major extracellular matrix component, can be studied using the light scattering phenomenon known as second-harmonic generation (SHG). The ratio of forward- to backward-scattered SHG photons (F/B) is sensitive to collagen fiber internal structure and has been shown to be an independent prognostic indicator of metastasis-free survival time (MFS). Here we assess the effects of heterogeneity in the tumor matrix on the possible use of F/B as a prognostic tool. Methods: SHG imaging was performed on sectioned primary tumor excisions from 95 untreated, estrogen receptor-positive, lymph node negative invasive ductal carcinoma patients. We identified two distinct regions whose collagen displayed different average F/B values, indicative of spatial heterogeneity: the cellular tumor bulk and surrounding tumor-stroma interface. To evaluate the impact of heterogeneity on F/B’s prognostic ability, we performed SHG imaging in the tumor bulk and tumor-stroma interface, calculated a 21-gene recurrence score (surrogate for OncotypeDX®, or S-ODX) for each patient and evaluated their combined prognostic ability. Results: We found that F/B measured in tumor-stroma interface, but not tumor bulk, is prognostic of MFS using three methods to select pixels for analysis: an intensity threshold selected by a blinded observer, a histogram-based thresholding method, and an adaptive thresholding method. Using both regression trees and Random Survival Forests for MFS outcome, we obtained data-driven prediction rules that show F/B from tumor-stroma interface, but not tumor bulk, and S-ODX both contribute to predicting MFS in this patient cohort. We also separated patients into low-intermediate (S-ODX < 26) and high risk (S-ODX ≥26) groups. In the low-intermediate risk group, comprised of patients not typically recommended for adjuvant chemotherapy, we find that F/B from the tumor-stroma interface is prognostic of MFS and can identify a patient cohort with poor outcomes. Conclusions: These data demonstrate that intratumoral heterogeneity in F/B values can play an important role in its possible use as a prognostic marker, and that F/B from tumor-stroma interface of prim

    The Green, Green Grass of Home: an archaeo-ecological approach to pastoralist settlement in central Kenya

    Get PDF
    © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This paper considers the ecological residues of pastoralist occupation at the site of Maili Sita in Laikipia, central Kenya, drawing links with the archaeological record so as to contribute a fresh approach to the ephemeral settlement sites of mobile herding communities, a methodological aspect of African archaeology that remains problematic. Variations in the geochemical and micromorphological composition of soils along transects across the site are compared with vegetation distributions and satellite imagery to propose an occupation pattern not dissimilar to contemporary Cushitic-speaking groups further north. We argue that Maili Sita exemplifies the broad migratory and cultural exchange networks in place during the mid- to late second millennium AD, with pastoralist occupants who were both physically and culturally mobile.British Academy (2002-5 Funding) European Union - Marie Curie Initiatives (EXT grant 2007-11

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore