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Abstract

Background: Metastases are the leading cause of breast cancer-related deaths. The tumor microenvironment
impacts cancer progression and metastatic ability. Fibrillar collagen, a major extracellular matrix component, can be
studied using the light scattering phenomenon known as second-harmonic generation (SHG). The ratio of forward-
to backward-scattered SHG photons (F/B) is sensitive to collagen fiber internal structure and has been shown to be
an independent prognostic indicator of metastasis-free survival time (MFS). Here we assess the effects of
heterogeneity in the tumor matrix on the possible use of F/B as a prognostic tool.

Methods: SHG imaging was performed on sectioned primary tumor excisions from 95 untreated, estrogen
receptor-positive, lymph node negative invasive ductal carcinoma patients. We identified two distinct regions
whose collagen displayed different average F/B values, indicative of spatial heterogeneity: the cellular tumor bulk
and surrounding tumor-stroma interface. To evaluate the impact of heterogeneity on F/B's prognostic ability, we
performed SHG imaging in the tumor bulk and tumor-stroma interface, calculated a 21-gene recurrence score
(surrogate for OncotypeDX®, or S-ODX) for each patient and evaluated their combined prognostic ability.

Results: We found that F/B measured in tumor-stroma interface, but not tumor bulk, is prognostic of MFS using
three methods to select pixels for analysis: an intensity threshold selected by a blinded observer, a histogram-based
thresholding method, and an adaptive thresholding method. Using both regression trees and Random Survival
Forests for MFS outcome, we obtained data-driven prediction rules that show F/B from tumor-stroma interface, but
not tumor bulk, and S-ODX both contribute to predicting MFS in this patient cohort. We also separated patients
into low-intermediate (S-ODX < 26) and high risk (5-ODX 226) groups. In the low-intermediate risk group,
comprised of patients not typically recommended for adjuvant chemotherapy, we find that F/B from the tumor-
stroma interface is prognostic of MFS and can identify a patient cohort with poor outcomes.
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Conclusions: These data demonstrate that intratumoral heterogeneity in F/B values can play an important role in
its possible use as a prognostic marker, and that F/B from tumor-stroma interface of primary tumor excisions may
provide useful information to stratify patients by metastatic risk.
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Background

Breast cancer is the most common invasive cancer in
women, with the majority of deaths attributed to metas-
tasis [1]. Breast tumors are typically classified using mo-
lecular and genetic markers as well as clinical staging
systems. These biomarkers are analyzed to determine
prognosis, predict response to therapies, and are also
used as surrogates for outcome (i.e. measures of treat-
ment effects that correlate with a clinical endpoint) in
invasive breast cancers [2]. Such characterization may
include expression levels of estrogen receptor (ER), pro-
gesterone receptor, and human epidermal growth factor
receptor-2, and testing for other proliferation, invasion,
and epithelial-mesenchymal transition markers. Tumors
can exhibit heterogeneity, with different regions express-
ing different genetic aberrations [3—6] and differences in
key biomarkers [7]. Heterogeneity in cell types is fre-
quently seen in breast cancers and has been linked to
poor patient prognosis independent of typical clinical
variables including ER status, lymph node involvement,
and tumor size [8]. Improving individualized treatments
and overall patient survival therefore requires a better
understanding of heterogeneity in the breast tumor
microenvironment [9, 10]. Likewise, developing any new
biomarker requires an understanding of its heterogeneity
within tumors and the impact of that heterogeneity on
its clinical utility.

Both cellular and noncellular components of the
microenvironment facilitate primary tumor growth and
metastasis [3, 11-13]. The ECM is an essential compo-
nent of the solid tumor microenvironment, affecting cell
biomechanics and signaling and therefore directly
impacting metastatic potential. Microscopic ECM prop-
erties provide biophysical support and chemical cues
necessary for normal cell function and are a result of
constant matrix synthesis, modification, and degradation
[14, 15]. As a major component of the ECM, collagen
plays a critical role in cell migration and differentiation
[14, 16]. Increased collagen deposition and crosslinking
are associated with malignancy, and changes in collagen
organization are thought to promote tumor cell invasion,
possibly via in increased protein deposition, increased
tissue stiffness, and linearization of collagen fibers [17-24].
In more aggressive breast cancers, irregular tumor-stroma
boundaries are seen with orthogonally-aligned fibers

facilitating cell invasion [18]. These altered collagen
properties in turn affect biochemical signaling and
tissue biomechanical properties, encouraging tumor
cell proliferation, migration, and dysregulation of nor-
mal cellular activities [25].

Fibrillar collagen can produce an intrinsic optical sig-
nal called second-harmonic generation (SHG) [26]. SHG
is a nonlinear optical phenomenon that occurs when
two identical photons scatter off a noncentrosymmetric
material, producing a single photon with exactly twice
the energy of the initial photons [26]. In SHG images of
excised primary breast tumor, the presence of collagen
fibers oriented perpendicular to the tumor border has
been shown to be prognostic of breast cancer progres-
sion and to enable tumor cell invasion [19, 27, 28], and
in in vivo models of breast cancer, tumor cells can be
observed locomoting along SHG+ collagen fibers [29].
Recent studies have demonstrated that SHG can be
used, alone and in conjunction with two-photon excited
fluorescence, to identify early stages of breast ductal car-
cinoma, collagen morphological changes during tumor
progression, and to provide prognostic information on
patient survival [30-32].

In addition to producing images whose properties pro-
vide insight into disease states, SHG polarization and
scattering directionality can reveal important informa-
tion about tissue. Polarization-resolved SHG has also
been used to assess structural changes in ECM collagen
during disease progression, including breast cancers
[33-36]. This technique exploits the polarization of inci-
dent light to reveal information about collagen at the
molecular level including helix pitch angles, fibril
organization, and orientation. The directionality of SHG
scattering from an individual fiber is sensitive to its in-
ternal structure, including fibril diameter, spacing, and
disorder of fibril packing within the fiber [37-40]. We
collectively call these three parameters the collagen fiber
internal structure (FIS). One measure of SHG emission
directionality is the ratio of forward-emitted to
backward-emitted SHG (where “forward” is in the direc-
tion of the excitation laser), or the F/B ratio. F/B is sen-
sitive to FIS, can be measured on a point-by-point basis
or used to generate F/B images, and is distinct from the
overall orientation of a fiber in an SHG image [19, 41].
SHG directionality imaging and analysis has been used
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to distinguish healthy and diseased tissue in breast
[42, 43], ovarian [44], lung [45], and basal cell cancers [46].

We have previously shown that the average F/B from
SHG images of a cohort of untreated ER+, lymph node
negative (LNN), invasive ductal carcinoma (IDC)
samples is an independent prognostic indicator of
metastasis-free survival time (MFS) [47]. The samples used
in that study were tissue microarrays comprised of 1-mm
tissue discs and as such, the F/B values prognostic of MFS
in that study were taken from a small part of the excised
primary tumor.

Recently, we performed SHG imaging on core needle
biopsy sections taken from breast cancer patients prior
to neoadjuvant chemotherapy (NACT) administration.
As these tissue strips (~0.2 x 1.5 cm) span multiple re-
gions of interest (ROIs), we selected two types of regions
for study: the cellular tumor bulk and the surrounding
tumor-stroma interface, consisting mainly of ECM proteins
and stromal cells, each identified by a clinical pathologist.
We found that F/B measured in the tumor-stroma inter-
face, but not tumor bulk, was associated with Residual
Cancer Burden class, one measure of NACT response [48].
These results from needle biopsy sections revealed that
heterogeneity in collagen FIS affects the relationship be-
tween pre-treatment F/B and subsequent NACT response.

Prompted by that discovery, in this study we investi-
gated how heterogeneity in primary tumor excisions
affects the ability of F/B to predict MFS in untreated
IDC patients. We evaluated the association between col-
lagen FIS (as reported by F/B) and MFS in two regions
associated with tumor tissue in primary tumor excisions.
We then used both regression trees [49] and Random
Survival Forests (RSF) [50] to further explore this associ-
ation and the combined prognostic ability of F/B and a
widely used 21-gene recurrence score. Our results reveal
that heterogeneity in SHG F/B measurements within
breast tumor samples is significant and must be consid-
ered when evaluating this method as a possible predictor
of metastasis and further suggest that F/B measured in
appropriate tumor regions may add prognostic informa-
tion to currently used genomic methods.

Methods

Patient samples

Slides prepared from post-biopsy primary breast cancer
surgical excisions from 95 different patients were used from
a collection at the Erasmus Medical Center (Rotterdam,
Netherlands). The studies on secondary use of archived
tissues was approved in writing by the Medical Ethics
Committee of the Erasmus Medical Center, Rotterdam,
Netherlands (MEC 02.953) and was performed in accord-
ance with the Code of Conduct (The Code for Proper
Secondary Use of Human Tissue) of the Federation of
Medical Scientific Societies in The Netherlands. Primary
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tumor excisions were formalin-fixed and paraffin-
embedded, (FFPE) mounted on slides as 5 um sections and
stained with hematoxylin and eosin (H&E). Multiple re-
gions were imaged within a single 5 pm section from each
patient in this study. Patients were tested for ER status
using immunohistochemistry, where the cutoff for receptor
positivity was 10% positive tumor cells. All patients were
ER+ and LNN and had not been treated with NACT or ad-
juvant hormonal nor chemotherapy. Other primary tumor
characteristics are summarized in Supplementary Table 1.
Some patients received radiation therapy, which has been
shown not to affect distant metastases [51]. No other treat-
ment was received before nor after excision of the primary
tumor. We note that these are historical samples and
clinical practice in the Netherlands at the time was
more focused on monitoring patients. Thus, these
cases are uniquely suitable for a purely prognostic
study.

Follow-up data on patient outcomes were recorded
every 3 months for 2 years, every 6 months for years 3-5,
and every 12 months afterwards. Gene expression data
for these patients are archived in the GEO repository
(ncbi.nlm.nih.gov/geo/) as part of databases GSM2034
and GSM5327. In order to study F/B in the context of
the 21-gene OncotypeDX"® score, we used a surrogate
21-gene score (S-ODX) calculated from these gene ex-
pression data using the publicly available Recurrence
Online tool (www.recurrenceonline.com), an online ana-
lysis tool to determine breast cancer recurrence scores
and hormone receptor status using microarray data [52].

In this study, we wanted to evaluate the effect of
heterogeneity on F/B’s prognostic ability in a clinical set-
ting, with the hope of producing a clinically relevant
technique for predicting metastasis. Therefore, we per-
formed SHG imaging and F/B analysis using samples
that were already within the clinical workflow, specific-
ally the typical FFPE H&E sections generated from pri-
mary tumor excisions, as opposed to fresh, unprocessed
tumor tissue. Using these FFPE H&E sections also allows
us to easily identify clinically relevant regions within the
tumor that inform pathologists’ diagnoses and recom-
mendations. Consequently, we note that the F/B value
we report here is not necessarily equal to F/B that would
be measured in unprocessed fresh tissue because various
steps in processing and mounting may affect the F/B
value.

Imaging

A Spectra Physics MaiTai Ti:Sapphire laser (circularly
polarized at the sample using a Berek Compensator, 100
fs pulses at 80 MHz, 810 nm, ~ 4 mW at the sample) was
directed through an Olympus Fluoview FV300 scanner.
The laser was focused through an Olympus UMPLFL20XW
water-immersion lens (20x, 0.95 NA), which subsequently
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captured backward-propagating SHG signal (ie. the B
image). This backward-propagating SHG signal was sepa-
rated from the excitation beam using a 670 nm dichroic
mirror, filtered (HQ405/30 m-2P, Chroma), and collected by
a photomultiplier tube (Hamamatsu H10492-003). The
forward-scattered SHG (i.e. the F image) was collected
through an Olympus 0.9 NA condenser, reflected by a 565
nm dichroic mirror (565 DCSX, Chroma) to remove excita-
tion light, and captured using an identical filter (HQ405/30
m-2P, Chroma) and identical photomultiplier tube (Hama-
matsu H10492-003) with minimal autofluorescence cap-
tured, as previously described [48].

Image analysis

User-defined thresholds

Image pairs were analyzed using Fiji, as we have previ-
ously described [47, 48, 53]: in summary, to produce a
forward-to-backward scattering ratio (F/B) for a given
ROI, two masks (one for the F image and one for the B
image) were created by a blinded observer selecting a
threshold for each F and each B image that best distin-
guished pixels within fibers from background pixels.
Pixels above the threshold were set to 1 and those below
to 0, producing binary F and B masks. The binary masks
were multiplied together to create a final mask of pixels
within collagen fibers. In this final mask, pixels are
assigned a value of 1 only if the value of that pixel is 1 in
both the F and B masks (i.e. located within a collagen
fiber), and O if otherwise. The background-subtracted F
and B images were divided to produce a single F/B
image, which was multiplied by this final mask (the
product of the binary F and B masks). The average value
of the nonzero pixels from the resultant image yielded
the average F/B of the entire ROL.

Histogram-based thresholding

To reduce possible user bias in image analysis, histogram-
based automatic image thresholding (“Otsu’s method”) was
also performed [54]. This method separates pixels into two
classes: foreground pixels above a selected threshold (i.e.
collagen fiber) and background pixels. The algorithm steps
through all possible thresholds, calculates the variance of
each pixel class and selects the threshold that minimizes
the sum of foreground and background variances. A
threshold was selected for each image using Otsu’s method
with a scaling factor of 0.6 implemented in MATLAB
(Mathworks, Inc.). Foreground pixels were converted to 1
and background to 0 to produce binary F and B masks,
which were multiplied by the background-subtracted F/B
image to produce a single F/B value as described above.

Adaptive thresholding
While histogram-based segmentation succeeds in calculat-
ing thresholds with minimal user input (reducing possible
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bias), this method does not consider heterogeneity (i.e.
spatial variation in intensity) within the images. A real-
time adaptive thresholding method was used to account
for these variations as follows [55]. Our goal continues to
be to generate a mask whose pixel values are 1 if they are
in collagen fibers and 0 if they are background pixels. In
adaptive thresholding, we do this by considering each
pixel in the image and assigning that pixel a value of 1 or
0, depending on its value relative to the average intensity
of the pixels in a window centered on the pixel in ques-
tion. A small window size is desirable as it will be more
responsive to variations in image intensity, allowing some-
what dim collagen pixels in regions whose collagen is
overall very dark to be assigned a value of 1. However, if
the window is too small, it could be contained within
regions that are entirely collagen-free, thus assigning back-
ground pixels a value of 1. Hence our first task is to iden-
tify the smallest window size for each image that will not
fit entirely into collagen-free regions. For this initial task
we first binarize the entire image based upon whether
each pixel is greater than or less than an arbitrary value
(0.6x the average pixel intensity of the entire image). Then,
a series of progressively smaller windows are scanned
across the binarized image and the percentage of nonzero
pixels calculated for every possible position of the window
in the image. The first window size that, when applied to
any location in the image, has < 5% nonzero pixels is se-
lected as the smallest allowed window size for that image.
This window size is next applied to the original image and
a mask is generated whereby each pixel in the image is
assigned a value of 1 or 0 depending upon whether it is
less than or greater than 0.6x the average pixel value in
the window surrounding it. This algorithm was imple-
mented in MATLAB (Mathworks, Inc.) and a binary mask
produced for each image. The resultant F and B masks
were then multiplied by the background-subtracted F/B
image to produce a single F/B value as described above.
All graphs were generated using GraphPad Prism 5
and statistical analysis performed using Prism 5 or R.

Calibration

For each imaging session, an F and B image of no sam-
ple (for background) and a reference F and B image of a
dilute stock solution of fluorescein isothiocyanate (FITC)
were collected (to quantify day-to-day variations in laser
alignment, detector alignment, etc.). Variations were
normalized by dividing each patient sample’s F/B value
by F/B of the measured FITC value for that imaging
session.

Results

To illustrate the heterogeneity in collagen FIS, we
sequentially acquired H&E and SHG images from one
sample by holding the y position of the ROI constant
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and moving across the tissue section in x. The resultant
series of images (typically 660 x 660 pm ROIs for SHG)
were stitched together to form image strips (Fig. 1 and
Supplementary Fig. 1) [56]. In the H&E image, our
collaborating breast pathologist marked different regions
including the tumor bulk and surrounding tumor-
stroma interface (solid and dashed boxes, respectively)
as well as uninvolved tissue (circle). To produce the ac-
companying F/B image we calculated F/B in the SHG
strip using user-defined thresholds to set background
pixels to zero as described above. Variations in collagen
FIS, as reported by F/B, are clearly visible in both the
tumor bulk (solid box) and tumor-stroma interface
(dashed box).

Collagen fiber internal structure differs between tumor
regions

We next investigated whether the observed variations in
E/B can be found systemically between biologically rele-
vant, identifiable regions in the tumor. In collaboration
with breast pathologists, we previously identified two
region types in breast cancer core needle biopsies: the
highly cellular tumor bulk and the tumor-stroma inter-
face directly adjacent (i.e. within ~ 660 um, one micro-
scope field of view), which is comprised mainly of ECM
proteins. In that study of core needle biopsies, we
observed that F/B from the tumor-stroma interface, but
not the tumor bulk, of core needle biopsy sections is as-
sociated with NACT response in certain breast cancer
patients [48]. As a result, in this study we chose to evalu-
ate F/B in the same two types of regions (tumor bulk
and tumor-stroma interface) in sections from primary
tumor excisions. Examples of these regions are shown in
both H&E and SHG in Fig. 2.

An observer blinded to patient outcome was trained
by a pathologist to recognize these regions in primary
excisions and acquired 3 images in the tumor bulk and 3
in the tumor-stroma interface of each slide. The F/B
values for each of the 3 ROIs within each region type
were averaged to produce a single F/B for tumor bulk
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and one for tumor-stroma interface in each patient. In
most of the excisions (# =92 of 95), a clear tumor-
stroma interface was available for imaging. In agreement
with our previous results for core needle biopsy samples
imaged prior to NACT [48], we found a significant dif-
ference between measured bulk and interface F/B values,
indicating heterogeneity in collagen FIS between these
two regions of the tumor (p <0.0001, Fig. 3). Addition-
ally, to put these values in context we imaged further
away from tumor bulk (at least one full field of view, ~
660 um). This was possible in 60 of the 95 slides, and an
example region is circled in Fig. 1. The F/B values from
these “far” regions (17.7 + 6.60) were significantly greater
than the tumor bulk (t-test, p <0.0001, data not shown)
and tended to be slightly greater than the tumor-stroma
interface (t-test, p = 0.07, data not shown).

F/B generated from user-defined thresholds and its
relation to metastasis-free survival

Our previous discovery that F/B is an independent
prognostic indicator of metastasis-free survival time was
generated using a tissue microarray in which 1-mm
diameter discs were available for each patient and min-
imal information on intratumoral heterogeneity was ob-
tainable [47]. Armed with larger tissue sections and the
realization that F/B significantly varies between different
tumor regions, one naturally then asks if assessing F/B
in certain regions can improve its prognostic ability.
Based on the observed significant FIS differences
between the tumor bulk and tumor-stroma interface, we
assessed the prognostic ability of F/B measured in each
of those tumor regions.

Patients were first listed in order from lowest to high-
est based on In F/B (natural log of F/B) measured in
tumor bulk and then divided into four equal groups
based on this ordering. The first group (Quartile 1, or
Q1) contained patients with the lowest F/B (correspond-
ing to values <2.11, n =24). Q2 consisted of patients
with In F/B from 2.11-2.35 (n=24), Q3 with In F/B
from 2.35-2.56 (n=24) and Q4 with the highest In F/B

Fig. 1 Collagen F/B is heterogeneous within primary breast tumor tissue. SHG F/B images (a series of adjacent ROIs extending along the x-axis)
and matching H&E images were stitched end-to-end to form a composite ROI for a representative sample. Examples of tumor bulk (solid box),
tumor-stroma interface (dashed box), and uninvolved tissue (circle) are shown. The F/B values were plotted in a false color “heatmap” (low F/B
values = dark blue, high F/B values = yellow) to illustrate differences in F/B within the tumor region including tumor bulk and tumor-stroma

interface, indicating intratumoral heterogeneity in F/B
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to all images in this figure

Fig. 2 Collagen features vary between the tumor bulk and the tumor-stroma interface of primary tumor excisions. Primary tumor excisions
contain both tumor bulk (solid boxes) and tumor-stroma interface (dashed boxes). Tumor bulk consists of tumor cell clusters surrounded by
individual SHG-producing fiber bundles. The tumor-stroma interface is comprised mainly of closely packed collagen fibers and individual stromal
cells adjacent to the tumor bulk. Representative SHG F/B and matching H&E images from 3 individual patients are shown. The scale bar applies
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values, >2.56 (n =23). A Kaplan-Meier plot was then
generated for the tumor bulk (Fig. 4). A second plot
(Fig. 4) was generated for In F/B derived from the
tumor-stroma interface in a similar manner (Q1 In F/B:
<243, Q2 In F/B: 2.43-2.69, Q3 In F/B: 2.69-2.97, Q4
In F/B: >2.97, n=23 in each quartile). Tests for a linear
association between In F/B and the log-relative risk of
MES were first carried out by fitting separate Cox re-
gression models relating MES to each of these two mea-
sures, with corresponding partial likelihood ratio test p-
values of 0.05 (tumor bulk) and 0.0008 (tumor-stroma
interface). A Cox regression model including both mea-
sures was additionally fit to these same data and demon-
strated no effect of In F/B for tumor bulk (p =0.63)
when simultaneously accounting for In F/B from the
tumor-stroma interface (p =0.0046). In all cases, the

254
201
Q 151
2
& 101
54
0-
Tumor bulk  Tumor-stroma interface
Fig. 3 F/B in tumor-stroma interface versus tumor bulk. Collagen fiber
internal structure, as represented by F/B, is significantly different
between tumor bulk and the tumor-stroma interface in IDC ER+ LNN
excised primary tumors. Error bars = SD, t-test, p < 0.0001, n =92

regression models demonstrate an empirical trend of
decreasing relative risk with increasing F/B, whether
taken from tumor bulk or tumor host-interface. Taken
in combination, these results suggest that F/B from the
tumor-stroma interface has a stronger explanatory effect
for MFS than does F/B from the tumor bulk.

F/B generated using histogram-based thresholding and
its relation to metastasis-free survival

One possible reason for the different prognostic ability
of F/B from tumor-stroma interface versus tumor bulk is
that the two regions appear differently to the outcome-
blinded observer who must choose intensity thresholds
to select bright pixels within collagen fibers and reject
dark pixels in background regions. For example, regions
in the tumor bulk typically contain well-defined individ-
ual fiber bundles (solid boxes, Fig. 2) while regions in
the tumor-stroma interface typically contain closely
packed collagen fibers (dashed boxes, Fig. 2). The
observer’s selection of thresholds may be influenced by
these differing image features, possibly affecting the re-
sultant F/B and hence its prognostic ability.

To reduce this possible user bias in calculating F/B, we
next generated masks for distinguishing collagen pixels
from background pixels using two less subjective tech-
niques. First, a histogram-based technique (Otsu’s
method) was used to separate pixels into foreground
(collagen fibers) and background and generate a result-
ing binary mask. These masks were then applied to the
background-subtracted F and B images and average F/B
values were calculated as described above. We again
found a significant difference between F/B calculated
from tumor bulk versus tumor-stroma interface, indicating
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Fig. 4 F/B measured in tumor-stroma interface and bulk of primary tumor sections and relation to MFS. SHG F/B values were produced by a
user-defined threshold for each individual image from the a, tumor bulk and b, tumor-stroma interface. Patients were split into four equal
quartiles (Q1 =lowest F/B) based on F/B, and the percentage of each quartile surviving without metastasis then plotted versus time. Tick marks
represent censoring events caused when a patient dies of a cause other than cancer or is lost to follow-up. Partial likelihood ratio tests for In F/B:

p =0.05 (tumor bulk, n =95) and p =0.00008 (tumor-stroma interface, n =92)

FIS heterogeneity between two regions of the tumor (¢-test,
p <0.0001, n =92). Patients were then divided into four
quartiles based on In F/B from each region (tumor bulk:
Q1 In FB: <2.73, n =24; Q2 In F/B: 2.73-3.40, n =24; Q3
In F/B: 3.40-3.75, n=24; Q4 In F/B: >3.75, n =23; and
tumor-stroma interface: Q1 In F/B: < 3.37, Q2 In F/B: 3.37-
3.64, Q3 In F/B: 3.64-3.97, Q4 In F/B: > 3.97, n =23 in each
quartile) and Kaplan-Meier plots were generated (Fig. 5).
As before, tests for a linear association between In F/B and
the log-relative risk of MFS were carried out by fitting sep-
arate Cox regression models respectively relating MFS to F/
B from tumor bulk (p =0.01) and tumor-stroma interface
(p =0.0009). The Cox regression model including both
measures demonstrated no effect of In F/B for tumor bulk

(p = 0.50) when simultaneously accounting for In F/B from
the tumor-stroma interface (p =0.0058). In all cases, the
regression models again demonstrate an empirical trend of
decreasing relative risk with increasing F/B, whether taken
from tumor bulk or host-interface. When taken in combin-
ation, these results continue to suggest that F/B from the
tumor-stroma interface has a stronger explanatory effect.

F/B generated using adaptive thresholding and its
relation to metastasis-free survival

While Otsu’s method succeeds in reducing the influence
that an observer has on the process of selecting pixels
for analysis, it does not account for heterogeneity in
intensity within images, which may be critical when
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Fig. 5 F/B generated using histogram-based thresholding and its relation to MFS. SHG F/B values were produced using binary masks generated
by a histogram-based thresholding method for each individual image taken in the a, tumor bulk and b, tumor-stroma interface. Patients were
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assessing heterogeneity in tumor ECM. Therefore, we
next used an adaptive thresholding method that com-
pares each pixel to the average of a surrounding window
to determine its contribution to the binary mask. We
calculated F/B using these masks and again found a sig-
nificant difference between average F/B in tumor bulk
and tumor-stroma interface (¢-test, p <0.0001, n =92).
Patients were divided into four quartiles based on In F/B
from each region (tumor bulk: Q1 In F/B: <2.01, n = 24;
Q2 In F/B: 2.01-2.39, n=24; Q3 In F/B: 2.39-2.75, n =
24; Q4 In F/B: >2.75, n =23; and tumor-stroma inter-
face: Q1 In F/B: <2.68, Q2 In F/B: 2.68-2.93, Q3 In F/B:
2.93-3.17, Q4 In F/B: > 3.17, n =23 in each quartile) and

Kaplan-Meier plots were generated (Fig. 6). Tests for a
linear association between In F/B and the log-relative risk
of MFS were again carried out by fitting separate Cox
regression models respectively relating MFS to F/B from
tumor bulk (p =04) and tumor-stroma interface (p =
0.002). The Cox regression model including both measures
demonstrated no effect of In F/B for tumor bulk (p =0.9)
when simultaneously accounting for In F/B from the
tumor-stroma interface (p = 0.0028). The regression models
demonstrate an empirical trend of decreasing relative risk
with increasing F/B from the tumor host-interface. The
combined results once again suggest that F/B from the
tumor-stroma interface has a stronger explanatory effect.
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F/B and 21-gene recurrence scores

One possible clinical use of F/B measurements would be to
identify people who are at risk for experiencing future me-
tastases and are therefore candidates for adjuvant therapy,
should be considered for clinical trials, etc. The standard of
care for the IDC ER+ LNN patient cohort at our institution
(University of Rochester Medical Center) uses the 21-gene
recurrence score assay OncotypeDX°. Using the latest post-
Trial Assigning Individualized Options for Treatment
(TAILORX) criterion, patients with a recurrence score of 26
and above are recommended for adjuvant chemotherapy
while patients with a score of below 26 are not [57]. In
order to study F/B in the context of OncotypeDX", we used
the Recurrence Online tool that uses gene expression data

archived online in the GEO repository to calculate a surro-
gate 21-gene score (S-ODX) [52]. To evaluate the effect of
heterogeneity on the ability of F/B to predict metastasis in
conjunction with the S-ODX score, we utilized two related
approaches to analyze these data: regression trees, and a
Random Survival Forest (RSF) algorithm, which both derive
a data-driven predictive regression model [50, 58—60]. In
this case, both algorithms constructed a predictive model
for MFS considering as input parameters the S-ODX score,
F/B from tumor bulk calculated with the three image
analysis methods, and F/B from tumor-stroma interface
calculated with the three image analysis methods. The re-
gression tree approach selected two of the input parameters
(S-ODX and tumor-stroma interface F/B as calculated
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using adaptive thresholding) and divided patients into 3 risk
categories based upon those two inputs. Importantly, this
algorithm does not use prespecified cut-points to derive
risk groups; rather, the data are used to determine these
groupings using an appropriate search algorithm and the
results (Fig. 7) show, similar to earlier results (Figs. 4, 5 and
6), that the lowest 25% of the tumor-stroma interface F/B
values identify a subgroup having the worst MFS experi-
ence. Furthermore, in the group having higher tumor-
stroma interface F/B values (i.e., In F/B >2.675) the S-ODX
score subdivides this group into moderate (S-ODX >25.5)
and low risk groups with respect to MFS. This regression
tree approach does not deem tumor-stroma interface F/B
calculated using the other two image analysis methods, nor
any of the tumor bulk F/B measurements, as adding add-
itional useful information in determining patient risk. The
RSF algorithm does not produce a single tree; however, it
produces measures of variable importance, and consistent
with the regression tree approach, identifies F/B from the
tumor-stroma interface calculated using adaptive threshold-
ing and S-ODX as the two most influential predictors.

To determine if F/B can further stratify patient groups
once their genomic score has been calculated, we next
separated our patient cohort into two groups based upon
their S-ODX score relative to the TAILORx cutoff (0-25
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for low-intermediate and >26 for high-risk patients)
[57]. We then generated Kaplan-Meier plots of In F/B
from tumor-stroma interface (calculated using adaptive
thresholding) as described above (Fig. 8). Due to the low
number of patients in each of the resulting graphs, we
plotted the Q1 cohort versus the combined Q2-Q4 co-
hort to view the trends. F/B from tumor-stroma inter-
face demonstrates prognostic ability in the S-ODX <26
cohort, but not in the S-ODX >26 cohort (partial likeli-
hood ratio test, p = 0.008 and p = 0.4, respectively).

Discussion

Here we assessed the heterogeneity in F/B within IDC
ER+ LNN patients, and the impact of that heterogeneity
on possible use of F/B as a prognostic marker. We found
that the heterogeneity in F/B within an individual tumor
is not entirely random, as F/B measured in the cellular
tumor bulk was statistically significantly different from
F/B measured in the collagenous tumor-stroma inter-
face. This agrees with our previously published study of
core needle biopsy sections taken from IDC patients
before NACT administration and subsequent tumor ex-
cision [48]. This suggests that the biological relevance of
the collagen in the two tumor regions may be different,
that the FIS of one region may have a different impact
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Fig. 7 Regression tree derived using the method of Leblanc & Crowley. When given the SODX score and all six methods of generating F/B as
inputs, this algorithm selects F/B from the tumor-stroma interface, calculated using the adaptive thresholding method (“FB_THI_AT"), and SODX
score (“SODX_score”), as predictors of MFS. The RSF method (results not shown) identifies the same two predictors has having the highest
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on metastasis than the other, and that the prognostic
ability of F/B may vary between the two regions. There-
fore, we assessed the relationship between SHG F/B and
MES in both these regions and, using user-defined
thresholds to select collagen pixels for analysis, observed
that F/B derived from the tumor-stroma interface has a
stronger explanatory effect than does F/B from the
tumor bulk.

Numerous automated image analysis and deep learning
techniques have been developed to study breast cancer
progression and improve diagnoses [61-63]. We imple-
mented two image processing techniques with the goal of
reducing user involvement in generating collagen fiber
masks. Histogram-based thresholding (Otsu’s method)
places pixels into foreground or background categories and
finds the threshold between the groups that minimizes the

sum of their variances. This reduces user input but does
not account for heterogeneity in intensity within individual
images. Adaptive thresholding compares each pixel’s value
to the surrounding pixel average in a defined window. Be-
cause the window size is generally smaller than the image
and is selected in an automated fashion for each individual
image, this technique better preserves spatial variation and
distinct contrasting features [55]. These methods also
found the same relationships between F/B and metastatic
outcome as F/B determined from a blinded user-defined
threshold: for both methods, the combination of graphical
analyses and Cox regression modeling found that F/B mea-
sured in the tumor-stroma interface had a stronger ex-
planatory effect than F/B measured in the tumor bulk
(Figs. 5, 6). This suggests that the difference in prognostic
ability between the two regions is not due to the outcome-
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blinded observer setting thresholds in a different manner
when faced with the two differently appearing types of
regions, and confirms the impact of heterogeneity in the
prognostic ability of F/B. Interestingly, in all image analysis
methods F/B from the tumor-stroma interface appears to
be identifying a cohort of patients (Quartile 1) with poor
outcomes relative to the rest of the studied population.

We are interested in evaluating the possible use of F/B
as a predictor of post-excision metastatic outcome,
where it may inform the clinical decision-making
process as to the nature of post-excision therapy. To fur-
ther probe the effects of heterogeneity on the use of F/B
for metastasis prediction, we evaluated the contribution
of F/B from tumor-stroma interface and from tumor
bulk on a survival prediction model. We developed
models using both the Leblanc-Crowley regression tree
and Random Survival Forest algorithms. These methods
consider all input predictors and attempt to find the best
prediction model using (possibly only some of) these in-
puts. One product currently used to assist in these treat-
ment decisions is OncotypeDX°®, a 21-gene score that is
part of the current standard of care at our institution
when planning post-excision treatment and is a known
predictor of MFS [64]. Therefore, as inputs we included
F/B from the tumor-stroma interface (3 image analysis
methods), F/B from the tumor bulk (3 image analysis
methods), as well as a 21-gene score inferred from Affy-
metrix data that is an economical surrogate for Oncoty-
peDX® score [52], or 7 total inputs for each patient. The
resultant regression tree (Fig. 7) finds that none of the
three values of F/B from tumor bulk contributes to clas-
sifying patients based on risk. However, F/B from
tumor-stroma interface (derived using adaptive thresh-
olding) is first selected to split patients into groups based
on recurrence risk, followed by S-ODX. The result is
three risk groups: 1) patients with In F/B < 2.65 (highest
risk), 2) patients with In F/B>2.675 and S-ODX >25.5,
and 3) patients with In F/B>2.675 and S-ODX < 25.5.
This reveals that F/B from the tumor-stroma interface
and S-ODX contribute to classifying patients’ metastatic
risk, but that F/B from the tumor bulk does not, again
demonstrating the effect of intratumoral heterogeneity
on the possible use of F/B as a predictor of metastasis.
Note that the selection of tumor-stroma interface F/B
calculated using adaptive thresholding, and rejection of
tumor-stroma interface F/B calculated using the other
two methods, should not be interpreted as a strong en-
dorsement of one image analysis method over the other,
as the three are highly correlated (range 0.83-0.9) and
hence are providing similar information. Interestingly, the
regression tree split group 2 and 3 based upon an S-ODX
value of 25.5, which is close to the TAILORx cutoff of 26.

Any tool to help predict metastasis and assist with
treatment decisions is likely to be applied in combination
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with the now well-established genomic scores. To further
understand how F/B can support genomic methods for
guiding treatment decisions we divided our patient
samples into two cohorts based upon the value of their S-
ODX score relative to the TAILORx cutoff of 26 (separat-
ing low-intermediate and high-risk groups). Because our
regression tree determined that F/B from tumor-stroma
interface, but not bulk, is necessary to classify patients
based on metastatic risk, we generated Kaplan-Meier plots
of F/B from tumor-stroma interface (calculated using
adaptive thresholding as it was selected by the RSF algo-
rithm) (Fig. 8). F/B from tumor-stroma interface demon-
strates prognostic ability in the S-ODX <26 cohort, but
not in the S-ODX >26 cohort (partial likelihood ratio test
p =0.008 and 0.4, respectively). The S-ODX <26 cohort
represents patients in the genomic low- and intermediate-
risk groups, patients who will likely not be recommended
for adjuvant chemotherapy. The F/B value from tumor-
stroma interface appears to identify a subgroup of these
patients with poor clinical outcome (Fig. 8). This suggests
that after assessment of patients with a 21 gene risk score,
F/B from tumor-stroma interface may be useful in further
stratifying patients with low or intermediate recurrence
scores, therefore providing a tool to better identify pa-
tients in need of adjuvant treatment, enrollment in clinical
trials, or more intensive monitoring.

Conclusions

Most breast cancer-related deaths are due to metasta-
ses. A tumor’s metastatic ability is affected by the
microenvironment, including the extracellular matrix.
The ratio of forward-to-backward-scattered (F/B)
second-harmonic generation (SHG) photons can be
used to study collagen fiber internal structure and has
been shown to be an independent prognostic indicator
of metastasis-free survival in invasive ductal carcinoma
patients. These results demonstrate that, within a co-
hort of 95 untreated ER+ LNN IDC patients, intratu-
mor heterogeneity has a significant impact on the
possible use of F/B as a tool to predict metastatic out-
come. They also suggest that F/B specifically from the
tumor-stroma interface of primary tumor excisions
may provide information, independent of cell-based
morphology or genomic methods, to further stratify
patients by metastatic risk and identify those in need
of post-operative treatment. This assessment can be
performed on the FFPE H&E slides already within the
clinical workflow but, naturally, this implies that the
slides used to determine F/B therefore contain tumor-
stroma interface. Due to the low number of patient
samples (n =95), these results should be considered
exploratory and they provide the impetus for add-
itional research to confirm/replicate these findings.
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Additional file 1: Table S1. Primary tumor characteristics and
associations with F/B. Primary tumor characteristics were measured and
recorded after tumor resection, including progesterone (PgR) and human
epidermal growth factor-2 (HER2) receptor expression, tumor stage, and
tumor size in mm. Also shown is the association between these clinical
variables and F/B from the tumor bulk and tumor-stroma interface pro-
duced using three analysis methods (individual thresholds, histogram-
based thresholds, and adaptive thresholds) was assessed using Mann-
Whitney tests (p-values listed).

Additional file 2: Figure S1. Full F/B heatmap and matching H&E for a
representative primary tumor excision section. a) SHG F/B images (a
series of adjacent ROIs extending along the x-axis) and b) matching H&E
images were stitched end-to-end to form a composite ROI. These files

are high definition versions of Fig. 1.
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