61 research outputs found

    Terveysalan yhteistyö Karjalan tasavallassa

    Get PDF

    E-kuvakirjoja iPadeilla

    Get PDF

    Pelot - toivo - luottamus : Näkökulmia Luoteis-Venäjän hiv- ja aids-kysymykseen

    Get PDF
    Verkkoversion ISBN 978-951-33-2282-3, ISSN 1795-810

    Molecular Mechanisms of Junctional Epidermolysis Bullosa: Col15 Domain Mutations Decrease the Thermal Stability of Collagen XVII

    Get PDF
    Mutations in the collagen XVII gene, COL17A1, are associated with junctional epidermolysis bullosa. Most COL17A1 mutations lead to a premature termination codon (PTC), whereas only a few mutations result in amino acid substitutions or deletions. We describe here two novel glycine substitutions, G609D and G612R, and a splice site mutation resulting in a deletion of three Gly–X–Y amino acid triplets. In order to investigate the molecular pathomechanisms of non-PTC mutations, G609D and G612R and two previously known substitutions, G627V and G633, and deletion of the amino acids 779–787 were introduced into recombinant collagen XVII. The thermal stability of the mutated collagens was assessed using trypsin digestions at incremental temperatures. All the four glycine substitutions significantly destabilized the ectodomain of collagen XVII, which manifested as 16°C–20°C lower Tm (midpoint of the helix-to-coil transition). These results were supported by secondary structure predictions, which suggested interruptions of the collagenous triple helix within the largest collagenous domain, Col15. In contrast, deletion of the three full Gly–X–Y triplets, amino acids 779–787, had no overall effect on the stability of the ectodomain, as the deletion was in register with the triplet structure and also generated compensatory changes in the NC15 domain

    Tuulivoimaloiden tuottaman äänen vaikutukset terveyteen

    Get PDF
    Tuulivoimalat tuottavat laajakaistaista ääntä, joka sisältää myös pieniä taajuuksia. Alle 20 Hz:n taajuisia ääniä kutsutaan sopimusluonteisesti infraääneksi. Infraääntä esiintyy yhdessä kuultavan äänen kanssa kaikkialla luonnossa ja rakennetuissa ympäristöissä. Infraäänet eivät yleensä ole kuultavissa tavanomaisilla ympäristössä esiintyvillä tasoill

    Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes

    Get PDF
    Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 x 10(-8)) with GDM, mapping to/near MTNR1B (P = 4.3 x 10(-54)), TCF7L2 (P = 4.0 x 10(-16)), CDKAL1 (P = 1.6 x 10(-4)), CDKN2A-CDKN2B (P = 4.1 x 10(-9)) and HKDC1 (P = 2.9 x 10(-8)). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.Peer reviewe

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore