96 research outputs found

    Career Decision Regrets in Faculty of Sport Sciences

    Get PDF
    University education as an important choice shapes the professional career. Career in sport is difficult than the other professional areas. Because the professional career process in sport is different from the classical occupational choices. Sometimes individuals feel career regret in difficult experiences. Then the negative feelings become a depression, loss of self-confidence etc. So, the purpose of this study was to determine the career decision regrets of students in faculty of sport sciences. The most commonly technique in descriptive research models, the survey method is used in the study. The study group consisted of 400 students from the four different departments in Bartın University, Faculty of Sport Sciences. In the study, individual information form which had developed by the researchers and ‘Career Decision Regret Scale’ was used. Descriptive statistics, t-test for independent groups and one-way Anova tests were used as statistical methods to analyze the data. As a result, it was determined that the students who are studying at the Department of Sports Sciences in Bartın University had a little regret of career decisions and the scale scores of the students differed significantly according to their age, departments, grade, place of birth, academic average, residence place, part time working, fathers’ working statute and educational level. The fact that the study group consists of only one university is seen as a limitation. Therefore, for future studies it may be suggested to increase the number of participants by joining the different universities’ students in the Departments of Sports Sciences

    Fonctionnalisation de Nanotubes de Carbone Multi-Parois par des Polymères

    Get PDF
    Cette thèse traite de la modification de surface des nanotubes de carbone avec des polymères Le chapitre I présente l'état de l'art des matériaux hybrides associant des liquides ioniques avec des nanotubes de carbone (NTC) ou du graphenes. Le chapitre II commence par un aperçu général de l'adsorption non-covalente de polymères sur la surface de NTC, suivi d'une description détaillée de l'étude réalisée sur la fonctionnalisation non covalente des nanotubes de carbone avec divers liquides ioniques polymérisable (LIP) à base d'imidazolium. Dans ce cadre, nous avons comparé deux méthodes expérimentales: la polymérisation in situ et le mélange en solution. Une des applications les plus importantes des NTC se situe dans le domaine des nanocomposites polymères/NTC. Le chapitre III décrit la formation de composites polyetherimide/NTC à partir des NTC-LIP obtenue dans la chapitre II. La préparation des composites en utilisant la méthode dite « solvent casting » est détaillée. Les NTC bruts, oxydés à l'acide nitrique et fonctionnalisé par le LIP ont été comparés. Des mesures mécaniques, thermiques et électriques de ces composées ont été aussi réalisées. Le dernier chapitre, divisé en deux sections, traite de la fonctionnalisation covalente des nanotubes de carbone avec une variété de polymères en utilisant deux approches différentes: "grafting from" et "grafting to". En utilisant la première approche, nous avons réalisé la croissance de chaînes de polyamide (PA) à partir de la surface de nanotubes de carbone fonctionnalisés avec le caprolactame par polymérisation anionique par ouverture de cycle. Les propriétés de traction des composites à base de PA ainsi préparées ont été étudiées. La polymérisation radicalaire de monomères vinyliques à base de LI de type imidazolium greffés à la surface de NTC est également présentée dans cette partie. Dans la deuxième partie du chapitre IV, nous présentons plusieurs stratégies de fonctionnalisation, y compris l'addition radicalaire et le greffage sur les défauts de NTC, pour la préparation des NTC fonctionnalisés de manière covalente avec des polymères compatibles avec des matrices époxy. ABSTRACT : This thesis deals with the surface modification of multi-walled carbon nanotubes with polymers with the aim to achieve a high level of dispersion in polymer matrices. Chapter I gives a comprehensive review of the state of the art of hybrids of ionic liquids with carbon nanomaterials, particularly, nanotubes and more recently, graphene. Chapter II starts with a general overview of the non-covalent adsorption of polymers onto the CNT surfaces followed by a detailed description of the study carried out on the non-covalent functionalization of CNTs with various imidazolium based polymerized ionic liquids (PIL). For this purpose, we further compare the two experimental methods: in situ polymerization and solution mixing. One of the most important applications of CNT is in polymer/CNT composites. Chapter III describes the formation of polyetherimide/CNT composites starting from PIL-CNT hybrids obtained in Chapter II. The preparation and characterization of composites using solvent casting methods have been detailed. Pristine, acid oxidized and PIL functionalized CNTs have been compared. Mechanical, thermal and electrical property measurements on these composites have also been described. The last chapter – Chapter IV, divided into two sections, discusses the covalent functionalization of CNTs with a variety of polymers using two main approaches: “grafting from” and “grafting to”. Using the first approach we have grown polyamide (PA) chains from the surface of caprolactam grafted CNTs by anionic ring opening polymerization. The tensile properties of the PA based composites prepared therefrom containing pristine, amine- and PA-functionalized CNTs have been investigated. The radical polymerization of vinyl imidazolium based IL monomers attached to the activated CNT surface is also given in this section. In the second part of Chapter IV, we have reported several “grafting to” functionalization strategies including radical addition and “defect site” grafting used for the preparation of CNTs covalently attached with polymers intended to blend well with epoxy matrices

    Effect of FEM choices in the modelling of incremental forming of aluminium sheets

    Full text link
    peer reviewedThis paper investigates the process of single point incremental forming of an aluminium cone with a 50-degree wall angle. Finite element (FE) models are established to simulate the process. Different FE packages have been used. Various aspects associated with the numerical choices as well as the material and process parameters have been studied. The final geometry and the reaction forces are presented as the results of the simulations. Comparison between the simulation results and the experimental data is also made

    Adsorption of choline benzoate ionic liquid on graphene, silicene, germanene and boron-nitride nanosheets: a DFT perspective

    Get PDF
    The adsorption of choline benzoate ([CH][BE]) ionic liquid (IL) on the surface of different hexagonal nanosheets has been studied using Density Functional Theory (DFT) methods. For this, the interaction mechanism, binding energies and electronic structure of [CH][BE] ionic liquid on four types of nanosheets, i.e., graphene, silicene, germanene and boron-nitride, were estimated and compared. The adsorption of [CH][BE] ionic liquid on different nanosheets is mainly featured by van der Waals forces, leading to strong benzoate ion–surface π-stacking. Likewise, there is also an important charge transfer from the anion to the sheet. The electronic structure analysis shows that Si- and Ge-based sheets lead to the largest changes in the HOMO and LUMO levels of choline benzoate. This paper provides new insights into the capability of DFT methods to provide useful information about the adsorption of ionic liquids on nanosheets and how ionic liquid features could be tuned through the adsorption on the suitable nanosheet.Ministerio de Economı´a y Competitividad (Spain, project CTQ2013-40476-R) and Junta de Castilla y León (Spain, project BU324U14)

    Heterogeneous catalysis based on supramolecular association

    Full text link
    [EN] Heterogeneous catalysis is based mostly on materials built with strong covalent bonds. However, supramolecular aggregation in which individual components self-assemble due to non-covalent interactions to create a larger entity offers also considerable potential for the preparation of materials with application in catalysis. The present article provides a perspective on the use of supramolecular aggregation for the development of heterogeneous catalysts. One of the main advantages of this approach is that the preparation procedure based on spontaneous self-assembly is frequently simpler than those that require the formation of covalent bonds. The emphasis in this article has been placed on the use in the preparation of heterogeneous catalysts of not only carbon materials, particularly graphene and carbon nanotubes, but also dendrimers and organic capsules. Examples of hybrid organic-inorganic materials such as mesoporous organosilicas, metal-organic frameworks and heteropolyacids are also briefly described. The purpose is to illustrate the breadth of the field and the diverse array of possibilities already developed to apply the concepts of supramolecular association in heterogeneous catalysis.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. Prof Parvulescu thanks UEFISCDI for the Projects 121/2017 and 32PCCD1/2018.Parvulescu, VI.; García Gómez, H. (2018). Heterogeneous catalysis based on supramolecular association. Catalysis Science & Technology. 8(19):4834-4857. https://doi.org/10.1039/c8cy01295dS48344857819J.-M. Lehn , Supramolecular chemistry , Vch , Weinheim , 1995J. W. Steed , J. L.Atwood and P. A.Gale , Definition and emergence of supramolecular chemistry , Wiley Online Library , 2012Herbst, S., Soberats, B., Leowanawat, P., Stolte, M., Lehmann, M., & Würthner, F. (2018). Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nature Communications, 9(1). doi:10.1038/s41467-018-05018-6Würthner, F., Thalacker, C., & Sautter, A. (1999). Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π Interactions. Advanced Materials, 11(9), 754-758. doi:10.1002/(sici)1521-4095(199906)11:93.0.co;2-5JELLEY, E. E. (1936). Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature, 138(3502), 1009-1010. doi:10.1038/1381009a0Wang, J., Liu, D., Zhu, Y., Zhou, S., & Guan, S. (2018). Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 231, 251-261. doi:10.1016/j.apcatb.2018.03.026Liebing, P., Pietrasiak, E., Otth, E., Kalim, J., Bornemann, D., & Togni, A. (2018). Supramolecular Aggregation of Perfluoroorganyl Iodane Reagents in the Solid State and in Solution. European Journal of Organic Chemistry, 2018(27-28), 3771-3781. doi:10.1002/ejoc.201800358Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171-1178. doi:10.1038/nbt874Balzani, V., Gómez-López, M., & Stoddart, J. F. (1998). Molecular Machines. Accounts of Chemical Research, 31(7), 405-414. doi:10.1021/ar970340yBai, C., & Liu, M. (2012). Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today, 7(4), 258-281. doi:10.1016/j.nantod.2012.05.002Lehn, J.-M. (2002). Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences, 99(8), 4763-4768. doi:10.1073/pnas.072065599Lehn, J.-M. (2007). From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev., 36(2), 151-160. doi:10.1039/b616752gSanders, J. K. M. (1998). Supramolecular Catalysis in Transition. Chemistry - A European Journal, 4(8), 1378-1383. doi:10.1002/(sici)1521-3765(19980807)4:83.0.co;2-3A. Lützen , Supramolecular Catalysis , ed. P. W. N. M. van Leeuwen , Wiley Online Library , 2008Zhao, L., Sui, X.-L., Li, J.-Z., Zhang, J.-J., Zhang, L.-M., Huang, G.-S., & Wang, Z.-B. (2018). Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Applied Catalysis B: Environmental, 231, 224-233. doi:10.1016/j.apcatb.2018.03.020Wang, X., Liu, Q., Yang, Q., Zhang, Z., & Fang, X. (2018). Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. Carbon, 136, 103-112. doi:10.1016/j.carbon.2018.04.059Yao, Y., Wei, X., Cai, Y., Kong, X., Chen, J., Wu, J., & Shi, Y. (2018). Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. Journal of Colloid and Interface Science, 525, 48-53. doi:10.1016/j.jcis.2018.04.034Leung, F. C.-M., Leung, S. Y.-L., Chung, C. Y.-S., & Yam, V. W.-W. (2016). Metal–Metal and π–π Interactions Directed End-to-End Assembly of Gold Nanorods. Journal of the American Chemical Society, 138(9), 2989-2992. doi:10.1021/jacs.6b01382Lu, C., Zhang, M., Tang, D., Yan, X., Zhang, Z., Zhou, Z., … Stang, P. J. (2018). Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 140(24), 7674-7680. doi:10.1021/jacs.8b03781Sun, Y., Li, S., Zhou, Z., Saha, M. L., Datta, S., Zhang, M., … Stang, P. J. (2017). Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 140(9), 3257-3263. doi:10.1021/jacs.7b10769Du, P., Jaouen, M., Bocheux, A., Bourgogne, C., Han, Z., Bouchiat, V., … Attias, A.-J. (2014). Surface-Confined Self-Assembled Janus Tectons: A Versatile Platform towards the Noncovalent Functionalization of Graphene. Angewandte Chemie, 126(38), 10224-10230. doi:10.1002/ange.201403572Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412Qu, S., Li, M., Xie, L., Huang, X., Yang, J., Wang, N., & Yang, S. (2013). Noncovalent Functionalization of Graphene Attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and Application as Electron Extraction Layer of Polymer Solar Cells. ACS Nano, 7(5), 4070-4081. doi:10.1021/nn4001963Du, P., Bléger, D., Charra, F., Bouchiat, V., Kreher, D., Mathevet, F., & Attias, A.-J. (2015). A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons. Beilstein Journal of Nanotechnology, 6, 632-639. doi:10.3762/bjnano.6.64Chefetz, B., Deshmukh, A. P., Hatcher, P. G., & Guthrie, E. A. (2000). Pyrene Sorption by Natural Organic Matter. Environmental Science & Technology, 34(14), 2925-2930. doi:10.1021/es9912877Pan, B., & Xing, B. (2008). Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 42(24), 9005-9013. doi:10.1021/es801777nChen, J., Chen, W., & Zhu, D. (2008). Adsorption of Nonionic Aromatic Compounds to Single-Walled Carbon Nanotubes: Effects of Aqueous Solution Chemistry. Environmental Science & Technology, 42(19), 7225-7230. doi:10.1021/es801412jPodeszwa, R. (2010). Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. The Journal of Chemical Physics, 132(4), 044704. doi:10.1063/1.3300064Peris, E. (2016). Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences. Chemical Communications, 52(34), 5777-5787. doi:10.1039/c6cc02017hRuiz-Botella, S., & Peris, E. (2015). Unveiling the Importance of π-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags. Chemistry - A European Journal, 21(43), 15263-15271. doi:10.1002/chem.201502948Sabater, S., Mata, J. A., & Peris, E. (2014). Immobilization of Pyrene-Tagged Palladium and Ruthenium Complexes onto Reduced Graphene Oxide: An Efficient and Highly Recyclable Catalyst for Hydrodefluorination. Organometallics, 34(7), 1186-1190. doi:10.1021/om501040xSabater, S., Mata, J. A., & Peris, E. (2014). Catalyst Enhancement and Recyclability by Immobilization of Metal Complexes onto Graphene Surface by Noncovalent Interactions. ACS Catalysis, 4(6), 2038-2047. doi:10.1021/cs5003959Wittmann, S., Schätz, A., Grass, R. N., Stark, W. J., & Reiser, O. (2010). A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water. Angewandte Chemie International Edition, 49(10), 1867-1870. doi:10.1002/anie.200906166Keller, M., Collière, V., Reiser, O., Caminade, A.-M., Majoral, J.-P., & Ouali, A. (2013). Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angewandte Chemie International Edition, 52(13), 3626-3629. doi:10.1002/anie.201209969MISHRA, S., ARORA, S., NAGPAL, R., & SINGH CHAUHAN, S. M. (2014). Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene. Journal of Chemical Sciences, 126(6), 1729-1736. doi:10.1007/s12039-014-0731-8Xing, L., Xie, J.-H., Chen, Y.-S., Wang, L.-X., & Zhou, Q.-L. (2008). Simply Modified Chiral Diphosphine: Catalyst Recyclingvia Non-covalent Absorption on Carbon Nanotubes. Advanced Synthesis & Catalysis, 350(7-8), 1013-1016. doi:10.1002/adsc.200700617Che, G., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393(6683), 346-349. doi:10.1038/30694Zhu, Z., Su, D., Weinberg, G., & Schlögl, R. (2004). Supermolecular Self-Assembly of Graphene Sheets:  Formation of Tube-in-Tube Nanostructures. Nano Letters, 4(11), 2255-2259. doi:10.1021/nl048794tFukushima, T. (2003). Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science, 300(5628), 2072-2074. doi:10.1126/science.1082289Tunckol, M., Durand, J., & Serp, P. (2012). Carbon nanomaterial–ionic liquid hybrids. Carbon, 50(12), 4303-4334. doi:10.1016/j.carbon.2012.05.017Subramaniam, K., Das, A., & Heinrich, G. (2011). Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Composites Science and Technology, 71(11), 1441-1449. doi:10.1016/j.compscitech.2011.05.018Chu, H., Shen, Y., Lin, L., Qin, X., Feng, G., Lin, Z., … Li, Y. (2010). Ionic-Liquid-Assisted Preparation of Carbon Nanotube-Supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance. Advanced Functional Materials, 20(21), 3747-3752. doi:10.1002/adfm.201001240Chun, Y. S., Shin, J. Y., Song, C. E., & Lee, S. (2008). Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun., (8), 942-944. doi:10.1039/b715463aSalvo, A. M. P., La Parola, V., Liotta, L. F., Giacalone, F., & Gruttadauria, M. (2016). Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem, 81(5), 471-476. doi:10.1002/cplu.201600023Park, H. S., Choi, B. G., Yang, S. H., Shin, W. H., Kang, J. K., Jung, D., & Hong, W. H. (2009). Ionic-Liquid-Assisted Sonochemical Synthesis of Carbon-Nanotube-Based Nanohybrids: Control in the Structures and Interfacial Characteristics. Small, 5(15), 1754-1760. doi:10.1002/smll.200900128Noël, S., Léger, B., Ponchel, A., Philippot, K., Denicourt-Nowicki, A., Roucoux, A., & Monflier, E. (2014). Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 235, 20-32. doi:10.1016/j.cattod.2014.03.030Wyrwalski, F., Léger, B., Lancelot, C., Roucoux, A., Monflier, E., & Ponchel, A. (2011). Chemically modified cyclodextrins as supramolecular tools to generate carbon-supported ruthenium nanoparticles: An application towards gas phase hydrogenation. Applied Catalysis A: General, 391(1-2), 334-341. doi:10.1016/j.apcata.2010.07.006Jean-Marie, A., Griboval-Constant, A., Khodakov, A. Y., Monflier, E., & Diehl, F. (2011). β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis. Chemical Communications, 47(38), 10767. doi:10.1039/c1cc13800fLéger, B., Menuel, S., Ponchel, A., Hapiot, F., & Monflier, E. (2012). Nanoparticle-Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis & Catalysis, 354(7), 1269-1272. doi:10.1002/adsc.201100888Zhang, J.-J., Ge, J.-M., Wang, H.-H., Wei, X., Li, X.-H., & Chen, J.-S. (2016). Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. ChemCatChem, 8(22), 3441-3445. doi:10.1002/cctc.201601065Qi, W., Liu, W., Liu, S., Zhang, B., Gu, X., Guo, X., & Su, D. (2014). Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solid-Acid Catalysts. ChemCatChem, 6(9), 2613-2620. doi:10.1002/cctc.201402270Willner, B., Katz, E., & Willner, I. (2006). Electrical contacting of redox proteins by nanotechnological means. Current Opinion in Biotechnology, 17(6), 589-596. doi:10.1016/j.copbio.2006.10.008Smalley, R. E., Li, Y., Moore, V. C., Price, B. K., Colorado, R., Schmidt, H. K., … Tour, J. M. (2006). Single Wall Carbon Nanotube Amplification:  En Route to a Type-Specific Growth Mechanism. Journal of the American Chemical Society, 128(49), 15824-15829. doi:10.1021/ja065767rJasti, R., Bhattacharjee, J., Neaton, J. B., & Bertozzi, C. R. (2008). Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures. Journal of the American Chemical Society, 130(52), 17646-17647. doi:10.1021/ja807126uFort, E. H., Donovan, P. M., & Scott, L. T. (2009). Diels−Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. Journal of the American Chemical Society, 131(44), 16006-16007. doi:10.1021/ja907802gFort, E. H., & Scott, L. T. (2010). One-Step Conversion of Aromatic Hydrocarbon Bay Regions into Unsubstituted Benzene Rings: A Reagent for the Low-Temperature, Metal-Free Growth of Single-Chirality Carbon Nanotubes. Angewandte Chemie, 122(37), 6776-6778. doi:10.1002/ange.201002859Lu, D., Cui, S., & Du, P. (2017). Large π-Extension of Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes. Synlett, 28(14), 1671-1677. doi:10.1055/s-0036-1588830Niu, T., Wu, J., Ling, F., Jin, S., Lu, G., & Zhou, M. (2017). Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir, 34(1), 553-560. doi:10.1021/acs.langmuir.7b03796Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J., & Kim, K. (2003). Cucurbituril Homologues and Derivatives:  New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research, 36(8), 621-630. doi:10.1021/ar020254kNi, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., & Tao, Z. (2014). Self-Assemblies Based on the «Outer-Surface Interactions» of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Accounts of Chemical Research, 47(4), 1386-1395. doi:10.1021/ar5000133Wang, P., Wu, Y., Zhao, Y., Yu, Y., Zhang, M., & Cao, L. (2017). Crystalline nanotubular framework constructed by cucurbit[8]uril for selective CO2 adsorption. Chemical Communications, 53(40), 5503-5506. doi:10.1039/c7cc02074kJames, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393gH.-C. Zhou , J. R.Long and O. M.Yaghi , Introduction to metal–organic frameworks , ACS Publications , 2012Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2014). Catalysis by metal–organic frameworks in water. Chem. Commun., 50(85), 12800-12814. doi:10.1039/c4cc04387aDhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Noh, T. H., & Jung, O.-S. (2016). Recent Advances in Various Metal–Organic Channels for Photochemistry beyond Confined Spaces. Accounts of Chemical Research, 49(9), 1835-1843. doi:10.1021/acs.accounts.6b00291Tabacchi, G. (2018). Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 19(11), 1249-1297. doi:10.1002/cphc.201701090Haldar, R., Reddy, S. K., Suresh, V. M., Mohapatra, S., Balasubramanian, S., & Maji, T. K. (2014). Flexible and Rigid Amine-Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO2Capture, and Catalysis. Chemistry - A European Journal, 20(15), 4347-4356. doi:10.1002/chem.201303610Tan, L.-L., Song, N., Zhang, S. X.-A., Li, H., Wang, B., & Yang, Y.-W. (2016). Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. Journal of Materials Chemistry B, 4(1), 135-140. doi:10.1039/c5tb01789kRimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923Winter, A., Hager, M. D., Newkome, G. R., & Schubert, U. S. (2011). The Marriage of Terpyridines and Inorganic Nanoparticles: Synthetic Aspects, Characterization Techniques, and Potential Applications. Advanced Materials, 23(48), 5728-5748. doi:10.1002/adma.201103612Ding, X., Gao, Y., Ye, L., Zhang, L., & Sun, L. (2015). Assembling Supramolecular Dye-Sensitized Photoelectrochemical Cells for Water Splitting. ChemSusChem, 8(23), 3992-3995. doi:10.1002/cssc.201500313Tajima, T., Sakata, W., Wada, T., Tsutsui, A., Nishimoto, S., Miyake, M., & Takaguchi, Y. (2011). Photosensitized Hydrogen Evolution from Water Using a Single-Walled Carbon Nanotube/Fullerodendron/SiO2 Coaxial Nanohybrid. Advanced Materials, 23(48), 5750-5754. doi:10.1002/adma.201103472Ueda, Y., Takeda, H., Yui, T., Koike, K., Goto, Y., Inagaki, S., & Ishitani, O. (2014). A Visible-Light Harvesting System for CO2Reduction Using a RuII-ReIPhotocatalyst Adsorbed in Mesoporous Organosilica. ChemSusChem, 8(3), 439-442. doi:10.1002/cssc.201403194Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., & Mashiko, S. (2001). Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature, 413(6856), 619-621. doi:10.1038/35098059Barth, J. V., Costantini, G., & Kern, K. (2005). Engineering atomic and molecular nanostructures at surfaces. Nature, 437(7059), 671-679. doi:10.1038/nature04166Klasovsky, F., Hohmeyer, J., Brückner, A., Bonifer, M., Arras, J., Steffan, M., … Claus, P. (2008). Catalytic and Mechanistic Investigation of Polyaniline Supported PtO2 Nanoparticles: A Combined in situ/operando EPR, DRIFTS, and EXAFS Study. The Journal of Physical Chemistry C, 112(49), 19555-19559. doi:10.1021/jp805970eNishiyama, F., Yokoyama, T., Kamikado, T., Yokoyama, S., Mashiko, S., Sakaguchi, K., & Kikuchi, K. (2007). Interstitial Accommodation of C60 in a Surface-Supported Supramolecular Network. Advanced Materials, 19(1), 117-120. doi:10.1002/adma.200601364Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521sSun, J., Xu, J., Grafmueller, A., Huang, X., Liedel, C., Algara-Siller, G., … Shalom, M. (2017). Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 205, 1-10. doi:10.1016/j.apcatb.2016.12.030Ishida, Y., Chabanne, L., Antonietti, M., & Shalom, M. (2014). Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir, 30(2), 447-451. doi:10.1021/la404101hZhang, J., Hao, J., Wei, Y., Xiao, F., Yin, P., & Wang, L. (2010). Nanoscale Chiral Rod-like Molecular Triads Assembled from Achiral Polyoxometalates. Journal of the American Chemical Society, 132(1), 14-15. doi:10.1021/ja907535gZheng, Y., Zhou, H., Liu, D., Floudas, G., Wagner, M., Koynov, K., … Ikeda, T. (2013). Supramolecular Thiophene Nanosheets. Angewandte Chemie, 125(18), 4945-4948. doi:10.1002/ange.201210090Lee, E., Kim, J.-K., & Lee, M. (2009). Reversible Scrolling of Two-Dimensional Sheets from the Self-Assembly of Laterally Grafted Amphiphilic Rods. Angewandte Chemie International Edition, 48(20), 3657-3660. doi:10.1002/anie.200900079Kambe, T., Sakamoto, R., Hoshiko, K., Takada, K., Miyachi, M., Ryu, J.-H., … Nishihara, H. (2013). π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. Journal of the American Chemical Society, 135(7), 2462-2465. doi:10.1021/ja312380bDong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., & Feng, X. (2015). Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electro

    Functionalization of Multi-Walled Carbon Nanotubes with Polymers

    No full text
    Cette thèse traite de la modification de surface des nanotubes de carbone avec des polymères Le chapitre I présente l'état de l'art des matériaux hybrides associant des liquides ioniques avec des nanotubes de carbone (NTC) ou du graphenes. Le chapitre II commence par un aperçu général de l'adsorption non-covalente de polymères sur la surface de NTC, suivi d'une description détaillée de l'étude réalisée sur la fonctionnalisation non covalente des nanotubes de carbone avec divers liquides ioniques polymérisable (LIP) à base d'imidazolium. Dans ce cadre, nous avons comparé deux méthodes expérimentales: la polymérisation in situ et le mélange en solution. Une des applications les plus importantes des NTC se situe dans le domaine des nanocomposites polymères/NTC. Le chapitre III décrit la formation de composites polyetherimide/NTC à partir des NTC-LIP obtenue dans la chapitre II. La préparation des composites en utilisant la méthode dite « solvent casting » est détaillée. Les NTC bruts, oxydés à l'acide nitrique et fonctionnalisé par le LIP ont été comparés. Des mesures mécaniques, thermiques et électriques de ces composées ont été aussi réalisées. Le dernier chapitre, divisé en deux sections, traite de la fonctionnalisation covalente des nanotubes de carbone avec une variété de polymères en utilisant deux approches différentes: "grafting from" et "grafting to". En utilisant la première approche, nous avons réalisé la croissance de chaînes de polyamide (PA) à partir de la surface de nanotubes de carbone fonctionnalisés avec le caprolactame par polymérisation anionique par ouverture de cycle. Les propriétés de traction des composites à base de PA ainsi préparées ont été étudiées. La polymérisation radicalaire de monomères vinyliques à base de LI de type imidazolium greffés à la surface de NTC est également présentée dans cette partie. Dans la deuxième partie du chapitre IV, nous présentons plusieurs stratégies de fonctionnalisation, y compris l'addition radicalaire et le greffage sur les défauts de NTC, pour la préparation des NTC fonctionnalisés de manière covalente avec des polymères compatibles avec des matrices époxyThis thesis deals with the surface modification of multi-walled carbon nanotubes with polymers with the aim to achieve a high level of dispersion in polymer matrices. Chapter I gives a comprehensive review of the state of the art of hybrids of ionic liquids with carbon nanomaterials, particularly, nanotubes and more recently, graphene. Chapter II starts with a general overview of the non-covalent adsorption of polymers onto the CNT surfaces followed by a detailed description of the study carried out on the non-covalent functionalization of CNTs with various imidazolium based polymerized ionic liquids (PIL). For this purpose, we further compare the two experimental methods: in situ polymerization and solution mixing. One of the most important applications of CNT is in polymer/CNT composites. Chapter III describes the formation of polyetherimide/CNT composites starting from PIL-CNT hybrids obtained in Chapter II. The preparation and characterization of composites using solvent casting methods have been detailed. Pristine, acid oxidized and PIL functionalized CNTs have been compared. Mechanical, thermal and electrical property measurements on these composites have also been described. The last chapter – Chapter IV, divided into two sections, discusses the covalent functionalization of CNTs with a variety of polymers using two main approaches: “grafting from” and “grafting to”. Using the first approach we have grown polyamide (PA) chains from the surface of caprolactam grafted CNTs by anionic ring opening polymerization. The tensile properties of the PA based composites prepared therefrom containing pristine, amine- and PA-functionalized CNTs have been investigated. The radical polymerization of vinyl imidazolium based IL monomers attached to the activated CNT surface is also given in this section. In the second part of Chapter IV, we have reported several “grafting to” functionalization strategies including radical addition and “defect site” grafting used for the preparation of CNTs covalently attached with polymers intended to blend well with epoxy matrice

    Verbena brasiliensis Vell.: a new record of an invasive alien species in the flora of Turkey

    No full text

    Verbena brasiliensis Vell.: a new record of an invasive alien species in the flora of Turkey

    No full text

    Force modelling for single point incremental forming

    No full text
    status: publishe
    corecore